Objective: In adults, there is evidence that improvement of metabolic-associated fatty liver disease (MAFLD) depends on the reduction of myosteatosis. In children, in whom the prevalence of MAFLD is alarming, this muscle-liver crosstalk has not been tested. Therefore, we aimed to explore whether the effects of a multicomponent intervention on hepatic fat is mediated by changes in intermuscular abdominal adipose tissue (IMAAT) in children with overweight/obesity.

Research Design And Methods: A total of 116 children with overweight/obesity were allocated to a 22-week family-based lifestyle and psychoeducational intervention (control group, n = 57) or the same intervention plus supervised exercise (exercise group, n = 59). Hepatic fat percentage and IMAAT were acquired by MRI at baseline and at the end of the intervention.

Results: Changes in IMAAT explained 20.7% of the improvements in hepatic steatosis (P < 0.05). Only children who meaningfully reduced their IMAAT (i.e., responders) had improved hepatic steatosis at the end of the intervention (within-group analysis: responders -20% [P = 0.005] vs. nonresponders -1.5% [P = 0.803]). Between-group analysis showed greater reductions in favor of IMAAT responders compared with nonresponders (18.3% vs. 0.6%, P = 0.018), regardless of overall abdominal fat loss.

Conclusions: The reduction of IMAAT plays a relevant role in the improvement of hepatic steatosis after a multicomponent intervention in children with overweight/obesity. Indeed, only children who achieved a meaningful reduction in IMAAT at the end of the intervention had a reduced percentage of hepatic fat independent of abdominal fat loss. Our findings suggest that abdominal muscle fat infiltration could be a therapeutic target for the treatment of MAFLD in childhood.

Download full-text PDF

Source
http://dx.doi.org/10.2337/dc21-2440DOI Listing

Publication Analysis

Top Keywords

hepatic steatosis
16
multicomponent intervention
12
hepatic fat
12
intervention hepatic
8
intermuscular abdominal
8
abdominal adipose
8
adipose tissue
8
children overweight/obesity
8
imaat responders
8
abdominal fat
8

Similar Publications

Arginine Metabolism Reprogramming in Perfluorooctanoic Acid (PFOA)-Induced Liver Injury.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Perfluorooctanoic acid (PFOA) is a persistent pollutant that has gained worldwide attention, owing to its widespread presence in the environment. Previous studies have reported that PFOA upregulates lipid metabolism and is associated with liver injury in humans. However, when the fatty acid degradation pathway is activated, lipid accumulation still occurs, suggesting the presence of unknown pathways and mechanisms that remain to be elucidated.

View Article and Find Full Text PDF

Bisphenol A (BPA) is an "environmental obesogen" and this study aims to investigate the intergenerational impacts of BPA-induced metabolic syndrome (MetS), specifically focusing on unraveling mechanisms. Exposure to BPA induces metabolic disorders in the paternal mice, which are then transmitted to offspring, leading to late-onset MetS. Mechanistically, BPA upregulates Srebf1, which in turn promotes the Pparg-dependent transcription of Dicer1 in spermatocytes, increasing the levels of multiple sperm microRNAs (miRNAs).

View Article and Find Full Text PDF

Non-canonical hepatic androgen receptor mediates glucagon sensitivity in female mice through the PGC1α/ERRα/mitochondria axis.

Cell Rep

January 2025

Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China. Electronic address:

Glucagon has recently been found to modulate liver fat content, in addition to its role in regulating gluconeogenesis. However, the precise mechanisms by which glucagon signaling synchronizes glucose and lipid metabolism in the liver remain poorly understood. By employing chemical and genetic approaches, we demonstrate that inhibiting the androgen receptor (AR) impairs the ability of glucagon to stimulate gluconeogenesis and lipid catabolism in primary hepatocytes and female mice.

View Article and Find Full Text PDF

Metabolic reprogramming is important in primary biliary cholangitis (PBC) development. However, studies investigating the metabolic signature within the liver of PBC patients are limited. In this study, liver biopsies from 31 PBC patients and 15 healthy controls were collected, and comprehensive metabolomics, lipidomics, and proteomics analysis were conducted to characterize the metabolic landscape in PBC.

View Article and Find Full Text PDF

Berardinelli-Seip congenital lipodystrophy (BSCL), also known as congenital generalized lipodystrophy (CGL), is an exceptionally rare autosomal recessive disorder marked by a significant deficiency of adipose tissue throughout the body. This lack of adipose tissue, normally found beneath the skin and between internal organs, leads to impaired adipocyte formation and fat storage, causing lipids to accumulate in atypical tissues such as muscles and the liver. The extent of adipose tissue loss directly influences the severity of symptoms, which can include a muscular appearance, increased appetite, bone cysts, marrow fat depletion, acromegalic features, severe insulin resistance, skeletal muscle hypertrophy, hypertrophic cardiomyopathy, hepatic steatosis, hepatomegaly, cirrhosis, and intellectual disability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!