Electroactive Soft Actuators Based on Columnar Ionic Liquid Crystal/Polymer Composite Membrane Electrolytes Forming 3D Continuous Ionic Channels.

ACS Appl Mater Interfaces

Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.

Published: September 2022

Here, we report low-voltage-driven fast-response nanostructured columnar ionic liquid crystal/polymer composite actuators that form three-dimensional continuous ion channels. A three-component self-assembly of a zwitterionic rod-like molecule (49.5 wt %), an ionic liquid (27.5 wt %), and poly(vinyl alcohol) (23.0 wt %) provided a free-standing stretchable membrane electrolyte. The dissociated ions can move through a continuous 3D ionophilic matrix surrounding the hydrophobic columns formed by the hexagonally organized rod-mesogens. Three-layer actuators composed of the electrolyte film sandwiched between two conductive polymer film electrodes of doped polythiophene exhibited a bending motion with 0.32% strain and moved 2 mm within 220 ms under 1 V at 0.1 Hz in 70% relative humidity due to the formation of electric double layers at the soft solid electrolyte/electrode interfaces. The bending strain of the columnar nanostructured actuator is comparable to those of polymer iongel actuators and block polymer actuators containing 25-80 wt % of ionic liquids. It is noteworthy that a small number of ions organized into the 3D nanochannels can generate the large bending deformation, which can contribute to reduce the risk of leakage of ions and the production cost. In addition, we have demonstrated a low-voltage-driven deformable mirror actuator that is expected to be applied to optical devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c11029DOI Listing

Publication Analysis

Top Keywords

ionic liquid
12
columnar ionic
8
liquid crystal/polymer
8
crystal/polymer composite
8
actuators
5
ionic
5
electroactive soft
4
soft actuators
4
actuators based
4
based columnar
4

Similar Publications

Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.

View Article and Find Full Text PDF

The focus on energy efficiency to move towards a more sustainable use of resources has intensified efforts to minimize friction and wear in mechanical systems, which account for 23% of the world's energy consumption. In this study, polyoxometalate ionic liquids (POM-ILs) are introduced as environmentally acceptable lubricant additives, for their potential friction-reducing and anti-wear (AW) properties. These compounds, characterized by their complex structures and tunable properties, have been investigated for their tribological performance across base fluids of varying polarities.

View Article and Find Full Text PDF

Substantial amounts of oily wastewater are inevitably generated during petroleum extraction and petrochemical production, and the effective treatment of these O/W emulsions is crucial for environmental protection and resource recovery. The development of an environmentally friendly, cost-effective, and efficient demulsifier that operates effectively at low concentrations remains a significant challenge. This study introduces an eco-friendly ionic liquid demulsifier, Cotton Cellulose-Dodecylamine (CCDA), which demonstrates exceptional demulsification performance at low concentrations.

View Article and Find Full Text PDF

Engineering silica nanocoated whole-cell asymmetric biocatalyst for efficient preparation of a key chiral intermediate of (S)-Rivastigmine.

J Biotechnol

January 2025

Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China. Electronic address:

In our previous study, the whole cells containing an aldo-keto reductase (yhdN) and glucose dehydrogenase (GDH) were constructed and applied in a stereoselective carbonyl reduction reaction to prepare (S)-NEMCA-HEPE, being a key chiral intermediate of (S)-Rivastigmine which is widely prescribed for the treatment of Alzheimer's disease. Although the conversion and enantiomeric excess (e.e.

View Article and Find Full Text PDF

A recent overview of the application of emerging extraction medium-based sample preparation for the determination of aflatoxins and their precursors in food samples.

J Chromatogr A

January 2025

School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China; Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou, 450001, China. Electronic address:

Food safety problem caused by aflatoxins (AFs) has become a major concern worldwide. However, due to the complexity of food matrices and the low concentration of analytes, the accurate and sensitive determination of AFs and their precursors in the biosynthetic pathway is extremely challenging, so the development of efficient sample preparation techniques has been urgently required. This paper reviews the recent advances in sample preparation based on some emerging extraction media for the determination of AFs and their precursors in different food samples, including ionic liquids (ILs) and IL-based composites, metal-organic frameworks (MOFs) and covalent organic frameworks (COFs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!