Biocompatible micromotors for biosensing.

Anal Bioanal Chem

Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain.

Published: October 2022

Micro/nanomotors are nanoscale devices that have been explored in various fields, such as drug delivery, environmental remediation, or biosensing and diagnosis. The use of micro/nanomotors has grown considerably over the past few years, partially because of the advantages that they offer in the development of new conceptual avenues in biosensing. This is due to their propulsion and intermixing in solution compared with their respective static forms, which enables motion-based detection methods and/or decreases bioassay time. This review focuses on the impacts of micro/nanomotors on biosensing research in the last 2 years. An overview of designs for bioreceptor attachment to micro/nanomotors is given. Recent developments have focused on chemically propelled micromotors using external fuels, commonly hydrogen peroxide. However, the associated fuel toxicity and inconvenience of use in relevant biological samples such as blood have prompted researchers to explore new micro/nanomotor biosensing approaches based on biocompatible propulsion sources such as magnetic or ultrasound fields. The main advances in biocompatible propulsion sources for micro/nanomotors as novel biosensing platforms are discussed and grouped by their propulsion-driven forces. The relevant analytical applications are discussed and representatively illustrated. Moreover, envisioning future biosensing applications, the principal advantages of micro/nanomotor synthesis using biocompatible and biodegradable materials are given. The review concludes with a realistic drawing on the present and future perspectives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428376PMC
http://dx.doi.org/10.1007/s00216-022-04287-xDOI Listing

Publication Analysis

Top Keywords

biocompatible propulsion
8
propulsion sources
8
biosensing
7
micro/nanomotors
5
biocompatible
4
biocompatible micromotors
4
micromotors biosensing
4
biosensing micro/nanomotors
4
micro/nanomotors nanoscale
4
nanoscale devices
4

Similar Publications

Mass production of biomedical microrobots demands expensive and complex preparation techniques and versatile biocompatible materials. Learning from natural bacteria flagella, the study demonstrates a magnetic polymer multilayer cylindrical microrobot that bestows the controllable propulsion upon an external rotating magnetic field with uniform intensity. The magnetic microrobots are constructed by template-assisted layer-by-layer technique and subsequent functionalization of magnetic particles onto the large opening of the microrobots.

View Article and Find Full Text PDF

A Lifetime of Catalytic Micro-/Nanomotors.

Nanomaterials (Basel)

December 2024

School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.

Microscopic and nanoscopic motors, often referred to as micro-/nanomotors, are autonomous devices capable of converting chemical energy from their surroundings into mechanical motion or forces necessary for propulsion. These devices draw inspiration from natural biomolecular motor proteins, and in recent years, synthetic micro-/nanomotors have attracted significant attention. Among these, catalytic micro-/nanomotors have emerged as a prominent area of research.

View Article and Find Full Text PDF

Recent Advances in Micro- and Nanorobot-Assisted Colorimetric and Fluorescence Platforms for Biosensing Applications.

Micromachines (Basel)

November 2024

Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.

Micro- and nanorobots (MNRs) have attracted significant interest owing to their promising applications in various fields, including environmental monitoring, biomedicine, and microengineering. This review explores advances in the synthetic routes used for the preparation of MNRs, focusing on both top-down and bottom-up approaches. Although the top-down approach dominates the field because of its versatility in design and functionality, bottom-up strategies that utilize template-assisted electrochemical deposition and bioconjugation present unique advantages in terms of biocompatibility.

View Article and Find Full Text PDF

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

Enzyme-powered nanomotors have attracted significant attention in materials science and biomedicine for their biocompatibility, versatility, and the use of biofuels in biological environments. Here, we employ a hybrid mesoscale method combining molecular dynamics and multi-particle collision dynamics (MD-MPC) to study the dynamics of nanomotors powered by enzyme reactions. Two cascade enzymes are constructed to be layered on the same surface of a Janus colloid, providing a confined space that greatly enhances reaction efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!