Aviation soot can affect contrail and cirrus cloud formation and impact climate. A product of incomplete combustion, soot particles, are fractal and hydrophobic aggregates comprising carbonaceous spheres with complex physicochemical properties. In the cirrus cloud regime, the surface wettability and pore abundance of soot particles are important determinants for their ice nucleation ability pore condensation and freezing. In the atmosphere, soot particles can undergo various ageing processes which modify their surface chemistry and porosity, thus acting as ice nucleating particles with varying abilities as a function of ageing. In this study, size-selected soot particles were treated by thermal denuding at 573 K in a pure nitrogen (N) or synthetic air (N + O) flow and then exposed to varying relative humidity conditions at a fixed temperature in the range from 218 to 243 K, to investigate the role of volatile content in the ice nucleation ability. Both organic-lean and organic-rich propane (CH) flame soot particles, as well as two types of commercially available carbon black soot particles with high and low surface wettability, were tested. The size and mass distribution of soot aerosol were monitored during the ice nucleation experiments. Bulk soot samples also prepared in pure N or synthetic air environments at 573 K were characterised by thermogravimetric analysis, Fourier transform infrared spectroscopy and dynamic vapour sorption measurements, to reveal the relation between denuding volatile content, associated soot particle property modifications and the ice nucleation ability. Our study shows that thermal denuding induces a change in soot particle porosity playing a dominant role in regulating its ice nucleation the pore condensation and freezing mechanism. The enrichment in mesopore (2-50 nm) availability may enhance soot ice nucleation. The presence of O in the thermal denuding process may introduce new active sites on soot particles for water interaction and increase soot surface wettability. However, these active sites only facilitate soot ice nucleation when mesopore structures are available. We conclude that a change in volatile content modifies both morphological properties and surface chemistry for soot particles, but porosity change plays the dominant role in regulating soot particle ice nucleation ability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2em00158f | DOI Listing |
Nano Lett
January 2025
Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.
Organisms that survive at freezing temperatures produce antifreeze proteins (AFPs) to manage ice nucleation and growth. Inspired by AFPs, a series of synthetic materials have been developed to mimic these proteins in order to avoid the limitations of natural AFPs. Despite their great importance in various antifreeze applications, the relationship between structure and performance of AFP mimics remains unclear, especially whether their molecular charge-specific effects on ice inhibition exist.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne Cédex, France.
Supercooling allows for retarding water crystallization toward negative Celsius temperatures. Previous findings of CO molecules shifting into bicarbonate species upon freezing, the latter which naturally adsorb on hydrophobic interfaces, are put in perspective here to interpret earlier published data. Since it has been shown that ice nucleation is unlikely on negatively charged surfaces, I propose that bicarbonates adsorb on most solid particles present in water that act as nucleators, thus retarding freezing and enhancing supercooling.
View Article and Find Full Text PDFiScience
November 2024
Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.
Largely varied anti-icing performance among superhydrophobic surfaces remains perplexing and challenging. Herein, the issue is elucidated by exploring the roles of surface chemistry and surface topography in anti-icing. Three superhydrophobic surfaces, i.
View Article and Find Full Text PDFInt J Pharm
January 2025
Institute of Energy and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland. Electronic address:
Numerous commercially available biopharmaceuticals are frozen or freeze-dried in vials. The temperature at which ice nucleates and its distribution across vials in a batch is critical to the design of freezing and freeze-drying processes. Here we study experimentally how the level of particulate impurities - a key parameter in pharmaceutical manufacturing - affects the ice nucleation behavior.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.
Ice interfaces are pivotal in mediating key chemical and physical processes such as heterogeneous chemical reactions in the environment, ice nucleation, and cloud microphysics. At the ice surface, water molecules form a quasi-liquid layer (QLL) with properties distinct from those of the bulk. Despite numerous experimental and theoretical studies, a molecular-level understanding of the QLL has remained elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!