In control of walking, sensory signals of decreasing forces are used to regulate leg lifting in initiation of swing and to detect loss of substrate grip (leg slipping). We used extracellular recordings in two insect species to characterize and model responses to force decrements of tibial campaniform sensilla, receptors that detect forces as cuticular strains. Discharges to decreasing forces did not occur upon direct stimulation of the sites of mechanotransduction (cuticular caps) but were readily elicited by bending forces applied to the leg. Responses to bending force decreases were phasic but had rate sensitivities similar to discharges elicited by force increases in the opposite direction. Application of stimuli of equivalent amplitude at different offset levels showed that discharges were strongly dependent upon the tonic level of loading: firing was maximal to complete unloading of the leg but substantially decreased or eliminated by sustained loads. The contribution of cuticle properties to sensory responses was also evaluated: discharges to force increases showed decreased adaptation when mechanical stress relaxation was minimized; firing to force decreases could be related to viscoelastic "creep" in the cuticle. Discharges to force decrements apparently occur due to cuticle viscoelasticity that generates transient strains similar to bending in the opposite direction. Tuning of sensory responses through cuticular and membrane properties effectively distinguishes loss of substrate grip/complete unloading from force variations due to gait in walking. We have successfully reproduced these properties in a mathematical model of the receptors. Sensors with similar tuning could fulfil these functions in legs of walking machines. Decreases in loading of legs are important in the regulation of posture and walking in both vertebrates and invertebrates. Recordings of activities of tibial campaniform sensilla, which encode forces in insects, showed that their responses are specifically tuned to detect force decreases at the end of the stance phase of walking or when a leg slips. These results have been reproduced in a mathematical model of the receptors and also have potential applications in robotics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529259 | PMC |
http://dx.doi.org/10.1152/jn.00285.2022 | DOI Listing |
J Pediatr Surg
December 2024
Yale New Haven Children's Hospital, Division of Pediatric Surgery, New Haven, CT, USA.
Purpose: Previous research on pediatric motor vehicle collisions (MVC) and fatalities has primarily focused on patient demographics and crash specific information. This study evaluates whether various measures of local infrastructure, including the National Walk Index (NWI), population density, and public school density, or macroeconomic forces, encapsulated in Social Vulnerability Index (SVI) and food area deprivation (PFA) can predict which counties are most at risk for pediatric traffic fatalities.
Methods: Counties with more than 100,000 children in the most recent US census and ≥1 pediatric traffic fatality as identified in the Fatality Analysis Reporting System (FARS) between 2017 and 2021 were included in the study.
Sci Rep
January 2025
Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Science, Changchun, 130022, Jilin, China.
The response mechanism of a Four-Quadrant Photodetector (QPD) in an experimental setting was studied by irradiating a single QPD cell with a millisecond-pulsed laser. The response signal of the irradiated QPD cell varied with energy flux, pulse width, and applied bias, and comprised four main stages: an initial stage, decreasing barrier stage, holding stage, and recovery stage. Not only was the response signal of the irradiated cell affected by laser irradiation, but also the responses of the other three cells.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China.
Acute and chronic inflammation are important pathologies of benign airway stenosis (BAS) fibrosis, which is a frequent complication of critically ill patients. cGAS-STING signalling has an important role in inflammation and fibrosis, yet the function of STING in BAS remains unclear. Here we demonstrate using scRNA sequencing that cGAS‒STING signalling is involved in BAS, which is accompanied by increased dsDNA, expression and activation of STING.
View Article and Find Full Text PDFFood Chem
December 2024
Key Laboratory of Product Packaging and Logistics, College of Packing and Engineering, Jinan University, Zhuhai 519070, China. Electronic address:
2,4-di-tert-butylphenol (2,4-DTBP) is an additive used in food packaging. The inhibitory effects of 2,4-DTBP on pancreatic lipase (PL) were investigated in this study. Kinetic analysis indicated that 2,4-DTBP competitively and reversibly inhibited PL activity.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.
Purpose: The present study is to explore the appropriate plantar support force for its effect on improving the collapse of the medial longitudinal arch with flexible flatfoot.
Methods: A finite element model with the plantar fascia attenuation was constructed simulating as flexible flatfoot. The appropriate plantar support force was evaluated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!