The Qinling Mountains are an important ecological function area in China. Exploring the trade-offs and synergies of ecosystem services is important for ecological protection and sustainable development in the Qinling Mountains. In this study, we analyzed the spatio-temporal variations of land uses in the Qinling Mountains in 2000, 2010 and 2020 based on remote sensing, meteorological, and soil texture data. The amounts of carbon sequestration, water yield, habitat quality, and soil conservation were calculated with CASA, InVEST and RUSLE models. The relationships between its spatially heterogeneous characteristics and various ecosystem services were analyzed. The results showed that, from 2000 to 2020, the area of arable land and grassland in the study area continued to decrease, the area of forest and building land increased, and the change of water body and unused land was not noticeable. Carbon sequestration was high in the east and low in the west, with an increasing trend. Water production continued to decrease, showing a tendency of higher on the south slope and lower on the north slope. Habitat quality increased steadily, while soil conservation increased and then decreased. Ecosystem services varied across land classes and across ecosystems in the same land class. In general, there was a synergistic relationship between carbon sequestration and soil conservation, habitat quality and soil conservation, carbon sequestration, and habitat quality. There was trade-off between carbon sequestration and water production, soil conservation and water production, habitat quality, and water production. There were significant differences in the relationship between service volumes under different conditions. The results could reduce the risk of trade-offs and maximize overall benefits, and provide a reference for promoting ecologically high-quality development and achieving a win-win situation for natural resource management and human well-being.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.202208.019 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
CO mineralization, a process where CO reacts with minerals to form stable carbonates, presents a sustainable approach for CO sequestration and mitigation of global warming. While the crucial role of water in regulating CO mineralization efficiency is widely acknowledged, a comprehensive understanding of the underlying mechanisms remains elusive. This study employs a combined experimental and atomistic simulation approach to elucidate the intricate mechanisms governing moisture-driven carbonation kinetics of calcium-bearing minerals.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
Dissolution of CO in water followed by the subsequent hydrolysis reactions is of great importance to the global carbon cycle, and carbon capture and storage. Despite numerous previous studies, the reactions are still not fully understood at the atomistic scale. Here, we combined ab initio molecular dynamics (AIMD) simulations with Markov state models to elucidate the reaction mechanisms and kinetics of CO in supercritical water both in the bulk and nanoconfined states.
View Article and Find Full Text PDFCarbon Balance Manag
January 2025
North Carolina State University, Raleigh, NC, USA.
Forests have the potential to contribute significantly to global climate policy efforts through enhanced carbon sequestration and storage in terrestrial systems and wood products. Projections models simulate changes future in forest carbon fluxes under different environmental, economic, and policy conditions and can inform landowners and policymakers on how to best utilize global forests for mitigating climate change. However, forest carbon modeling frameworks are often developed and applied in a highly disciplinary manner, e.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Hubei Key Laboratory of Biological Resource Protection and Utilization, Enshi, 445000, China.
Background: The carbon sequestration potential and water retention capacity of peatlands are closely linked to the growth dynamics of Sphagnum mosses. However, few studies have focused on the response of Sphagnum moss growth dynamics to UV-B radiation, and existing research has emphasized species differences. In this study, Sphagnum palustre L.
View Article and Find Full Text PDFMicrob Ecol
January 2025
Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy.
Posidonia oceanica retains a large amount of carbon within its belowground recalcitrant structure, the 'matte,' which is characterized by low oxygen availability and biodegradation. Fungi may play a pivotal role in carbon sequestration within the matte, even if little/no information is available. To fill this gap, we profiled fungal communities from the upper and lower layers of alive and dead matte, by using an ITS2-5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!