Background: The fatality rate of acute lung injury (ALI) is as high as 40% to 60%. Although various factors, such as sepsis, trauma, pneumonia, burns, blood transfusion, cardiopulmonary bypass, and pancreatitis, can induce ALI, patients with these risk factors will eventually develop ALI. The rate of developing ALI is not high, and the outcomes of ALI patients vary, indicating that it is related to genetic differences between individuals. In a previous study, we found multiple functions of cavin-2 in lung function. In addition, many other studies have revealed that CAV1 is a critical regulator of lung injury. Due to the strong relationship between cavin-2 and CAV1, we suspect that cavin-2 is also associated with ALI. Furthermore, we are curious about the role of the CAV family and cavin family genes in ALI.

Methods: To reveal the mechanism of CAV and CAVIN family genes in ALI, we propose DeepGENE to predict whether CAV and CAVIN family genes are associated with ALI. This method constructs a gene interaction network and extracts gene expression in 84 tissues. We divided these features into two groups and used two network encoders to encode and learn the features.

Results: Compared with DNN, GBDT, RF and KNN, the AUC of DeepGENE increased by 7.89%, 16.84%, 20.19% and 32.01%, respectively. The AUPR scores increased by 8.05%, 15.58%, 22.56% and 23.34%. DeepGENE shows that CAVIN-1, CAVIN-2, CAVIN-3 and CAV2 are related to ALI.

Conclusion: DeepGENE is a reliable method for identifying acute lung injury-related genes. Multiple CAV and CAVIN family genes are associated with acute lung injury-related genes through multiple pathways and gene functions.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1566523222666220829140649DOI Listing

Publication Analysis

Top Keywords

cavin family
20
family genes
20
cav cavin
16
acute lung
16
lung injury
12
mechanism cav
8
ali
8
ali high
8
ali patients
8
associated ali
8

Similar Publications

Caveolae, specialized and dynamic subdomains of the plasma membrane, have a crucial role in diverse cellular functions encompassing endocytosis, signal transduction, mechanosensation, lipid storage, and metabolism. Cavin family proteins are indispensable for caveolar formation and function. An increasing number of studies have found that cavins are involved in tumor growth, invasion, metastasis, and angiogenesis and may have dual roles in the regulation of cancer.

View Article and Find Full Text PDF

Increased susceptibility to diet-induced obesity in female mice impairs ovarian steroidogenesis: The role of elevated leptin signalling on nodal activity inhibition in theca cells.

Mol Metab

January 2025

Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland; The Royal Veterinary College, University of London, London, NW1 0TU, UK. Electronic address:

Objectives: Susceptibility to obesity in humans is driven by the intricate interplay of genetic, environmental and behavioural factors. Moreover, the mechanisms linking maternal obesity to infertility remain largely understudied. In this study, we investigated how variable susceptibility to obesity in mice affects ovarian steroidogenesis, with a particular focus on the leptin-mediated dysregulation of Nodal signalling pathway in theca cells (TC).

View Article and Find Full Text PDF

Unraveling the Cave: A Seventy-Year Journey into the Caveolar Network, Cellular Signaling, and Human Disease.

Cells

November 2023

Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy.

In the mid-1950s, a groundbreaking discovery revealed the fascinating presence of caveolae, referred to as flask-shaped invaginations of the plasma membrane, sparking renewed excitement in the field of cell biology. Caveolae are small, flask-shaped invaginations in the cell membrane that play crucial roles in diverse cellular processes, including endocytosis, lipid homeostasis, and signal transduction. The structural stability and functionality of these specialized membrane microdomains are attributed to the coordinated activity of scaffolding proteins, including caveolins and cavins.

View Article and Find Full Text PDF

Breast cancer has become the most significant malignant tumor threatening women's lives. Caveolae are concave pits formed by invagination of the plasma membrane that participate in many biological functions of the cell membrane, such as endocytosis, cell membrane assembly, and signal transduction. In recent years, Caveolae family-related proteins have been found to be closely related to the occurrence and development of breast cancer.

View Article and Find Full Text PDF

Introduction: The development of new autoantigen discovery techniques, like programmable phage immunoprecipitation sequencing (PhIP-Seq), has accelerated the discovery of neural-specific autoantibodies. Herein, we report the identification of a novel biomarker for paraneoplastic neurologic syndrome (PNS), Sloan-Kettering-Virus-Family-Transcriptional-Corepressor-2 (SKOR2)-IgG, utilizing PhIP-Seq. We have also performed a thorough clinical validation using normal, healthy, and disease/cancer control samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!