MDO: A Computational Protocol for Prediction of Flexible Enzyme-Ligand Binding Mode.

Curr Comput Aided Drug Des

Hefei National Laboratory for Physical Sciences at Microscale & CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China.

Published: August 2022

Aim: Developing a method for use in computer aided drug design Background: Predicting the structure of enzyme-ligand binding mode is essential for understanding the properties, functions, and mechanisms of the bio-complex, but is rather difficult due to the enormous sampling space involved.

Objective: Accurate prediction of enzyme-ligand binding mode conformation.

Method: A new computational protocol, MDO, is proposed for finding the structure of ligand binding pose. MDO consists of sampling enzyme sidechain conformations via molecular dynamics simulation of enzyme-ligand system and clustering of the enzyme configurations, sampling ligand binding poses via molecular docking and clustering of the ligand conformations, and the optimal ligand binding pose prediction via geometry optimization and ranking by the ONIOM method. MDO is tested on 15 enzyme-ligand complexes with known accurate structures.

Results: The success rate of MDO predictions, with RMSD < 2 Å, is 67%, substantially higher than the 40% success rate of conventional methods. The MDO success rate can be increased to 83% if the ONIOM calculations are applied only for the starting poses with ligands inside the binding cavities.

Conclusion: The MDO protocol provides high quality enzyme-ligand binding mode prediction with reasonable computational cost. The MDO protocol is recommended for use in the structure-based drug design.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573409918666220827151546DOI Listing

Publication Analysis

Top Keywords

enzyme-ligand binding
16
binding mode
16
ligand binding
12
success rate
12
mdo
8
computational protocol
8
binding
8
drug design
8
binding pose
8
mdo protocol
8

Similar Publications

Recycling of protein-rich environmental wastes and obtaining more valuable products from these recycled products is a topic of interest for researchers. This study aims to produce, purify, and characterize the physicochemical and structural properties of the protease enzyme produced from Brevibacillus agri SAR25 using salmon fish waste as substrate and also to evaluate the effect of protease on the chicken feather, enzyme-ligand interactions, and active site surface area. The production of protease was optimum on 50 g/L fish waste, pH 8, 40 °C, 96 h, and 150 rpm.

View Article and Find Full Text PDF

The growing focus on sustainable use of natural resources has brought attention to cashew nut shell liquid (CNSL), a by-product rich in anacardic acids (AAs) with potential applications in diabetes treatment. In this study, three different AAs from CNSL, monoene (15:1, AAn1), diene (15:2, AAn2), and triene (15:3, AAn3), and a mixture of the three (mix) were evaluated as -glucosidase inhibitors. The samples were characterized by combining 1D and 2D NMR spectroscopy, along with ESI-MS.

View Article and Find Full Text PDF

Background: Cathepsin-L (FhCL) is a group of enzymes that most flukes express and secreted significantly in parasite-host interactions. Researches are focusing on antigens released by as one of the keys to understanding immunologic pathways in parasite infection and targets for anthelmintics. Efforts to suppress FhCL function through vaccination or therapy using anthelmintic drugs are key factors in controlling field-level trematode infections.

View Article and Find Full Text PDF

Pyrrolnitrin, a potent antifungal compound originally discovered in Pseudomonas strains, is biosynthesized through a secondary metabolic pathway involving four key enzymes. Central to this process is PrnB, a heme enzyme that catalyzes the complex transformation of 7-Cl-L-tryptophan. Despite its structural similarity to indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase and its classification within the histidine-ligated heme-dependent aromatic oxygenase superfamily, PrnB has remained relatively unexplored due to the challenges in reconstituting its in vitro activity.

View Article and Find Full Text PDF

Cyclotriazadisulfonamide (CADA) is a macrocyclic compound known for its unique mechanism in inhibiting HIV infection by downregulating the CD4 T-cell receptor, a crucial entry point for the virus. Unlike other antiretrovirals, CADA exhibits activity against a wide range of HIV strains, as all HIV variants require CD4 binding for infection. Furthermore, CADA has shown a synergistic effect with clinically approved anti-HIV drugs, offering potential for enhanced therapeutic strategies (Vermeire & Schols, [65]).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!