Use of a 3D inkjet-printed model to access dust particle toxicology in the human alveolar barrier.

Biotechnol Bioeng

School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Republic of Korea.

Published: December 2022

Fine dust particles in the air travel into our body via the airway tract and cause severe respiratory diseases. Thus, the analysis of the effects of dust particles on the respiratory system has been receiving significant research interest. However, most studies on the toxicity of dust particles involve two-dimensional (2D) cell cultures, animal models, and epidemiology. Here, we inkjet-printed a three-dimensional (3D) alveolar barrier model to study how dust particles cause respiratory diseases. The three-layered in vitro model was exposed to A2 fine test dust with varying concentrations and exposure durations. The results highlighted the destruction of the tissue architecture along with apoptosis in the bioprinted alveolar barrier. The damage at the cellular level induced an increase in the amount of pro-inflammatory cytokines secreted, followed by triggering of the signal transduction pathway and activation of transcription factors. As a consequence of the release of cytokines, the extracellular matrix was degraded, which led to the collapse of the cell structure, loss of cell polarity, and a decrease in barrier tightness. Further, the pulmonary surfactant protein-related genes in the dust-treated alveolar tissue were investigated to evaluate the possible role of dust particles in pulmonary surfactant dysfunction. This study demonstrated the use of 3D-printed tissue model to evaluate the physiological impact of fine dust particles on cytotoxicity, alveolar barrier rigidity, and surfactant secretion of an alveolar barrier.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.28220DOI Listing

Publication Analysis

Top Keywords

dust particles
24
alveolar barrier
20
dust
8
fine dust
8
respiratory diseases
8
particles respiratory
8
pulmonary surfactant
8
alveolar
6
barrier
6
particles
6

Similar Publications

Phlorofucofuroeckol-A: A Natural Compound with Potential to Attenuate Inflammatory Diseases Caused by Airborne Fine Dust.

Medicina (Kaunas)

January 2025

Laboratory for Infection Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea.

: Persistent exposure to airborne fine dust (FD) particles contributing to air pollution has been linked to various human health issues, including respiratory inflammation, allergies, and skin diseases. We aimed to identify potential seaweed anti-inflammatory bioactive reagents and determine their effects on systemic inflammatory responses induced by FD particles. : While exploring anti-inflammatory bioactive reagents, we purified compounds with potential anti-inflammatory effects from the seaweed extracts of , , and .

View Article and Find Full Text PDF

To study the micro-morphological characteristics of PM2.5 and its effect on ambient air quality, a 7500F scanning electron microscope (SEM) was utilized in this study to examine the micromorphology and elemental composition of PM2.5 and its impact on ambient air quality during heavily polluted weather in Yining City in the winter of 2018-2019.

View Article and Find Full Text PDF

Sand and dust storms: a growing global health threat calls for international health studies to support policy action.

Lancet Planet Health

January 2025

Chinese Center for Disease Control and Prevention, Beijing, China; Department of Epidemiology, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.

Sand and dust storms increasingly threaten global environmental and public health. To date, 150 countries are directly affected, with more than 100 classified as non-dust source regions. With climate change, these storms are expected to become more frequent and severe.

View Article and Find Full Text PDF

Particle Size-Dependent Monthly Variation of Pollution Load, Ecological Risk, and Sources of Heavy Metals in Road Dust in Beijing, China.

Toxics

January 2025

Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Road dust carries various contaminants and causes urban non-point source pollution in waterbodies through runoff. Road dust samples were collected in each month in two years and then sieved into five particle size fractions. The concentrations of ten heavy metals (As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn, Fe) in each fraction were measured.

View Article and Find Full Text PDF

Zinc sulphide is a widely used inorganic powder, and its production has reached quantities greater than 1000 t/year. Therefore, in accordance with OECD guideline 436, an acute inhalation test was implemented to provide more accurate data. This study is crucial for ensuring the safety of workers exposed to zinc sulphide dust and complying with regulatory requirements for REACH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!