Predicting the need for hospitalisation of patients with coronavirus disease 2019 (COVID-19) is important for preventing healthcare disruptions. This observational study aimed to use the COVID-19 Registry Japan (COVIREGI-JP) to develop a simple scoring system to predict respiratory failure due to COVID-19 using only underlying diseases and symptoms. A total of 6873 patients with COVID-19 admitted to Japanese medical institutions between 1 June 2020 and 2 December 2020 were included and divided into derivation and validation cohorts according to the date of admission. We used multivariable logistic regression analysis to create a simple risk score model, with respiratory failure as the outcome for young (18-39 years), middle-aged (40-64 years) and older (≥65 years) groups, using sex, age, body mass index, medical history and symptoms. The models selected for each age group were quite different. Areas under the receiver operating characteristic curves for the simple risk score model were 0.87, 0.79 and 0.80 for young, middle-aged and elderly derivation cohorts, and 0.81, 0.80 and 0.67 in the validation cohorts. Calibration of the model was good. The simple scoring system may be useful in the appropriate allocation of medical resources during the COVID-19 pandemic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365048PMC
http://dx.doi.org/10.1017/S0950268821001837DOI Listing

Publication Analysis

Top Keywords

respiratory failure
12
failure covid-19
8
simple scoring
8
scoring system
8
validation cohorts
8
simple risk
8
risk score
8
score model
8
covid-19
6
simple
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!