Electroactive aniline tetramer-spider silk composite fibers with high conductivity and mechanical strength were developed using a dip coating method. The fabricated spider silk composite fibers retain the high mechanical strength (0.92 GPa) and unique reversible relaxation-contraction behavior of spider dragline silks. The aniline tetramer modified on the silk surface imparted electroactive properties to the composite fibers. The color of aniline tetramer/spider silk composite fibers could be controlled by applying different pH values and voltages. Furthermore, the composite fiber's resistivity could reach 186 Ω m which can conduct electrical current to light LEDs. This study could provide a valuable guideline for developing highly-conductive electrochromic spider silks for use in E-textiles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364158PMC
http://dx.doi.org/10.1039/d2ra01065hDOI Listing

Publication Analysis

Top Keywords

composite fibers
16
silk composite
12
electroactive aniline
8
aniline tetramer-spider
8
mechanical strength
8
composite
5
tetramer-spider silks
4
silks conductive
4
conductive electrochromic
4
electrochromic functionality
4

Similar Publications

Plant-based macromolecules such as lignocellulosic fibers are one of the promising bio-resources to be utilized as reinforcement for developing sustainable composites. However, due to their hydrophilic nature and weak interfacial bonding with polymer matrices, these fibers are mostly incompatible with biopolymers. The current research endeavor explores the novel eco-friendly oxalic acid (CHO.

View Article and Find Full Text PDF

Renewable energy-driven electrochemical CO2 reduction has emerged as a promising technology for a sustainable future. However, achieving efficient production of storable liquid fuels at ampere-level current densities remains a significant hurdle in the large-scale implementation of CO2 electroreduction. Here we report a novel catalytic electrode comprising chlorine-doped SnO2 nanoflowers arrayed on the exterior of three-dimensional nickel hollow fibers.

View Article and Find Full Text PDF

Hydroxycinnamic acid derivatives are a class of phenolic acid compounds, including sinapic acid, ferulic acid, and caffeic acid, which are widely found in plants. This experiment was conducted to study the effects of hydroxycinnamic acid derivatives (sinapic acid, ferulic acid, and caffeic acid) on the growth performance, muscle physical parameters, and intestinal morphology of tilapia. A total of 320 tilapia fingerlings (9.

View Article and Find Full Text PDF

Since the invention and commercialization of poly(-phenylene benzobisoxazole) (PBO) fibers, numerous breakthroughs in applications have been realized both in the military and aerospace industries, attributed to its superb properties. Particularly, PBO nanofibers (PNFs) not only retain the high performance of PBO fiber but also exhibit impressive nanofeatures and desirable processability, which have been extensively applied in extreme scenarios. However, no review has yet comprehensively summarized the preparation, applications, and prospective challenges of PNFs to the best of our knowledge.

View Article and Find Full Text PDF

Photoacoustic imaging (PAI) is a developing image modality that benefits from light-matter interaction and low acoustic attenuation to provide functional information on tissue composition at relatively large depths. Several studies have reported the potential of dichroism-sensitive photoacoustic (DS-PA) imaging to expand PAI capabilities by obtaining morphological information of tissue regarding anisotropy and predominant orientation. However, most of these studies have limited their analysis to superficial scanning of samples, where fluence effects are negligible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!