Despite digital learning disrupting traditional learning concepts and activities in higher education, for the successful integration of digital learning, the use and acceptance of the students are essential. This acceptance depends in turn on students' characteristics and dispositions, among other factors. In our study, we investigated the influence of digital competences, self-organization, and independent learning abilities on students' acceptance of digital learning and the influence of their acceptance on the resistance to the change from face-to-face to digital learning. To do so, we surveyed 350 students and analyzed the impact of the different dispositions using ordinary least squares regression analysis. We could confirm a significant positive influence of all the tested dispositions on the acceptance of digital learning. With the results, we can contribute to further investigating the underlying factors that can lead to more positive student perceptions of digital learning and build a foundation for future strategies of implementing digital learning into higher education successfully.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410740 | PMC |
http://dx.doi.org/10.1186/s41239-022-00350-w | DOI Listing |
Waste Manag
January 2025
Chair of Waste Processing Technology and Waste Management, Montanuniversitaet Leoben, Leoben, Austria. Electronic address:
Global waste generation is projected to reach 3.40 billion tons by 2050, necessitating improved waste sorting for effective recycling and progress toward a circular economy. Achieving this transformation requires higher sorting intensity through intensified processes, increased efficiency, and enhanced yield.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Spectrum sensing is recognized as a viable strategy to alleviate the scarcity of spectrum resources and to optimize their usage. In this paper, considering the time-varying characteristics and the dependence on various timescales within a time series of samples composed of in-phase (I) and quadrature (Q) component signals, we propose a multi-scale time-correlated perceptual attention model named MSTC-PANet. The model consists of multiple parallel temporal correlation perceptual attention (TCPA) modules, enabling us to extract features at different timescales and identify dependencies among features across various timescales.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Environmental Remote Sensing and Geoinformatics, Trier University, Universitätsring 15, 54296 Trier, Germany.
Assessing vines' vigour is essential for vineyard management and automatization of viticulture machines, including shaking adjustments of berry harvesters during grape harvest or leaf pruning applications. To address these problems, based on a standardized growth class assessment, labeled ground truth data of precisely located grapevines were predicted with specifically selected Machine Learning (ML) classifiers (Random Forest Classifier (RFC), Support Vector Machines (SVM)), utilizing multispectral UAV (Unmanned Aerial Vehicle) sensor data. The input features for ML model training comprise spectral, structural, and texture feature types generated from multispectral orthomosaics (spectral features), Digital Terrain and Surface Models (DTM/DSM- structural features), and Gray-Level Co-occurrence Matrix (GLCM) calculations (texture features).
View Article and Find Full Text PDFSensors (Basel)
January 2025
Mechnical and Vehicle Engineering, Hunan University, Changsha 411082, China.
Chip defect detection is a crucial aspect of the semiconductor production industry, given its significant impact on chip performance. This paper proposes a lightweight neural network with dual decoding paths for LED chip segmentation, named LDDP-Net. Within the LDDP-Net framework, the receptive field of the MobileNetv3 backbone is modified to mitigate information loss.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Key Laboratory of Concrete and Pre-Stressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 210096, China.
A method of bridge structure seismic response identification combining signal processing technology and deep learning technology is proposed. The short-time energy method is used to intelligently extract the non-smooth segments in the sensor acquired signals, and the short-time Fourier transform, continuous wavelet transform, and Meier frequency cestrum coefficients are used to analyze the spectrum of the non-smooth segments of the response of the bridge structure, and the response feature matrix is extracted and used to classify sequences or images in the LSTM network and the Resnet50 network. The results show that the signal processing techniques can effectively extract the structural response features and reduce the overfitting phenomenon of neural networks, and the combination of signal processing techniques and deep learning techniques can recognize the seismic response of bridge structures with high accuracy and efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!