A framework for in-vivo human brain tumor detection using image augmentation and hybrid features.

Health Inf Sci Syst

Department of Electronics and Communication, Jaypee Institute of Information Technology, Noida, 201309 India.

Published: December 2022

Brain tumor is caused by the uncontrolled and accelerated multiplication of cells in the brain. If not treated early enough, it can lead to death. Despite multiple significant efforts and promising research outcomes, accurate segmentation and classification of tumors remain a challenge. The changes in tumor location, shape, and size make brain tumor identification extremely difficult. An Extreme Gradient Boosting (XGBoost) algorithm using is proposed in this work to classify four subtypes of brain tumor-normal, gliomas, meningiomas, and pituitary tumors. Because the dataset was limited in size, image augmentation using a conditional Generative Adversarial Network (cGAN) was used to expand the training data. Deep features, Two-Dimensional Fractional Fourier Transform (2D-FrFT) features, and geometric features are fused together to extract both global and local information from the Magnetic Resonance Imaging (MRI) scans. The model attained enhanced performance with a classification accuracy of 98.79% and sensitivity of 98.77% for the test images. In comparison to state-of-the-art algorithms employing the Kaggle brain tumor dataset, the suggested model showed a considerable improvement. The improved results show the prominence of feature fusion and establish XGBoost as an appropriate classifier for brain tumor detection in terms on testing accuracy, sensitivity and Area under receiver operating characteristic (AUROC) curve.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420164PMC
http://dx.doi.org/10.1007/s13755-022-00193-9DOI Listing

Publication Analysis

Top Keywords

brain tumor
20
tumor detection
8
image augmentation
8
brain
7
tumor
6
framework in-vivo
4
in-vivo human
4
human brain
4
detection image
4
augmentation hybrid
4

Similar Publications

Putting the Puzzle Together: Case Report of Parinaud Syndrome in a Pediatric Patient.

J Binocul Vis Ocul Motil

January 2025

Department of Ophthalmology, Vanderbilt Eye Institute, Nashville, Tennessee.

Parinaud syndrome, also known as dorsal midbrain syndrome, is a condition affecting the dorsal midbrain region of the brainstem that presents with a triad of ophthalmic clinical findings, including upgaze paresis, convergence retraction nystagmus, and light-near dissociation. This case report will discuss the clinical presentation of Parinaud syndrome in a four-year-old patient who was seen in an out-patient clinic for intermittent exotropia 5 months after a suboccipital craniotomy resection of a pineal mass and ventriculoperitoneal (VP) shunt placement for associated hydrocephalus. Current literature is relatively sparse regarding the presentation of Parinaud syndrome in the pediatric population, with little known about prognosis and potential for recovery.

View Article and Find Full Text PDF

Background And Objective: MicroRNAs (miRNAs) are implicated in cancer by exerting roles in tumor growth, metastasis, and even drug resistance. The general trends of miRNA research in diverse cancers are not fully understood. In this work, miRNA-related research in colorectal cancer, prostate cancer, leukemia, and brain tumors was analyzed in search of key research trends with clinical potential.

View Article and Find Full Text PDF

Background And Purpose: The characteristics and role of NOD-like receptor (NLR) signaling pathway in high-grade gliomas were still unclear. This study aimed to reveal the association of NLR with clinical heterogeneity of glioblastoma (GBM) patients, and to explore the role of NLR pathway hub genes in the occurrence and development of GBM.

Methods: Transcriptomic data from 496 GBM patients with complete prognostic information were obtained from the TCGA, GEO, and CGGA databases.

View Article and Find Full Text PDF

Magnetic particle imaging (MPI) is an emerging modality that can address longstanding technological challenges encountered with magnetic particle hyperthermia (MPH) cancer therapy. MPI is a tracer technology compatible with MPH for which magnetic nanoparticles (MNPs) provide signal for MPI and heat for MPH. Identifying whether a specific MNP formulation is suitable for both modalities is essential for clinical implementation.

View Article and Find Full Text PDF

Apelin/APJ system: a novel promising target for anti-oxidative stress in stroke.

Front Pharmacol

January 2025

Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.

The apelin/APJ system has garnered increasing attention in recent years. In this review, we comprehensively discuss the physiological and pathological mechanisms of the apelin/APJ system in stroke. The apelin/APJ system is widely expressed in the central nervous system (CNS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!