Background: Liver failure (LF) is a life-threatening clinical syndrome characterized by intense systemic inflammation and organ failure(s), leading to a high mortality rate. The pathogenesis of LF is multifactorial, immune response, and gut bacterial translocation are thought to be major contributing factors. Mucosal-associated invariant T (MAIT) cells play a critical role in immune response and gut bacterial translocation. We aimed to investigate changes of the MAIT cell ratio in patients with LF and to explore the predictive value for long-term prognosis in patients with LF.
Material And Method: We recruited 75 patients with LF from Nantong Third People's Hospital, isolated peripheral blood mononuclear cells, and detected the proportion of circulating MAIT cells by flow cytometry. Statistical analyses were performed using the GraphPad Prism software.
Results: Our data showed that the proportion of MAIT cells alterations was independent of the cause of viral infection in patients with LF. Kaplan-Meier survival analysis showed that LF patients with low level of MAIT cells had poor long-term prognosis. The area under the receiver operating characteristic curve of the MAIT cell proportion was larger than that of the Model for End-Stage Liver Disease (MELD) score. More importantly, the combination of MAIT cell proportion and MELD score had a better effect in predicting long-term prognosis of LF patients than any single index (AUC = 0.91, 95% CI:0.84-0.97), and multivariate logistic regression analysis indicated that the circulating MAIT cell proportion was an independent risk factor for LF.
Conclusion: The proportion of MAIT cells in PBMC is an outstanding predictor for the long-term prognosis in patients with LF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410595 | PMC |
http://dx.doi.org/10.1097/MD.0000000000029809 | DOI Listing |
The role of immune cells in neurodegeneration remains incompletely understood. Our recent study revealed the presence of mucosal-associated invariant T (MAIT) cells in the meninges, where they express antioxidant molecules to maintain meningeal barrier integrity. Accumulation of misfolded tau proteins are a hallmark of neurodegenerative diseases.
View Article and Find Full Text PDFCancer Drug Resist
December 2024
Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
Primary and secondary resistance to immune checkpoint blockade (ICB) reduces its efficacy. The mechanisms underlying immunotherapy resistance are highly complex. In non-small cell lung cancer (NSCLC), these mechanisms are primarily associated with the loss of programmed cell death-ligand 1 (PD-L1) expression, genetic mutations, circular RNA axis and transcription factor regulation, antigen presentation disorders, and dysregulation of signaling pathways.
View Article and Find Full Text PDFTransplantation
January 2025
Medical School, University of Western Australia, Perth, WA, Australia.
Tissue-resident lymphocytes (TRLs) provide a front-line immunological defense mechanism uniquely placed to detect perturbations in tissue homeostasis. The heterogeneous TRL population spans the innate to adaptive immune continuum, with roles during normal physiology in homeostatic maintenance, tissue repair, pathogen detection, and rapid mounting of immune responses. TRLs are especially enriched in the liver, with every TRL subset represented, including liver-resident natural killer cells; tissue-resident memory B cells; conventional tissue-resident memory CD8, CD4, and regulatory T cells; and unconventional gamma-delta, natural killer, and mucosal-associated invariant T cells.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Introduction: Plaques are a hallmark feature of Alzheimer's disease (AD). We found that the loss of mucosal-associated invariant T (MAIT) cells and their antigen-presenting molecule MR1 caused a delay in plaque pathology development in AD mouse models. However, it remains unknown how this axis is impacting dystrophic neurites.
View Article and Find Full Text PDFInflamm Res
January 2025
Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China.
Mucosal-associated invariant T (MAIT) cells, a type of T lymphocytes with innate-like characteristics, are crucial in bridging innate and adaptive immunity. When activated, MAIT cells release various inflammatory molecules and swiftly respond to antigens. Notably, numerous studies highlight the significant impact of MAIT cells on tumors and various immune disorders by influencing the immune microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!