Purpose: The introduction of robotics for total knee arthroplasty (TKA) into the operating theatre is often associated with a learning curve and is potentially associated with additional complications. The purpose of this study was to determine the learning curve of robotic-assisted (RA) TKA within a multi-surgeon team.

Methods: This prospective cohort study included 83 consecutive conventional jig-based TKAs compared with 53 RA TKAs using the Robotic Surgical Assistant (ROSA) system (Zimmer Biomet, Warsaw, Indiana, USA) for knee osteoarthritis performed by three high-volume (> 100 TKA per year) orthopaedic surgeons. Baseline characteristics including age, BMI, sex and pre-operative Kellgren-Lawrence graded and Hip-Knee-Ankle Axis were well-matched between the conventional and RA TKA groups. Cumulative summation (CUSUM) analysis was used to assess learning curves for operative times for each surgeon. Peri-operative and delayed complications (infection, periprosthetic fracture, thromboembolism, and compromised wound healing) and revisions were reviewed.

Results: The CUSUM analysis for operative time demonstrated an inflexion point after 5, 6 and 15 cases for each of the three surgeons, or 8.7 cases on average. There were no significant differences (p = 0.53) in operative times between the RA TKA learning (before inflexion point) and proficiency (after inflexion point) phases. Similarly, the operative times of the RA TKA group did not differ significantly (p = 0.92) from the conventional TKA group. There was no discernible learning curve for the accuracy of component planning using the RA TKA system. The average length of post-operative follow-up was 21.3 ± 9.0 months. There was one revision for instability in the conventional TKA group and none in the RA TKA group. There were no significant difference (p > 0.99) in post-operative complication rates between the conventional TKA and RA TKA groups.

Conclusions: The introduction of the RA TKA system was associated with a learning curve for operative time of 8.7 cases. Operative times between the RA TKA and conventional TKA group were similar. The short learning curve implies this RA TKA system can be adopted relatively quickly into a surgical team with minimal risks to patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427173PMC
http://dx.doi.org/10.1186/s40634-022-00524-5DOI Listing

Publication Analysis

Top Keywords

learning curve
24
conventional tka
20
tka group
20
tka
16
operative times
16
operative time
12
inflexion point
12
times tka
12
tka system
12
total knee
8

Similar Publications

To establish a machine learning (ML) model for predicting prostate biopsy outcomes using prostate-specific antigen (PSA) values, multiparametric magnetic resonance imaging (mpMRI) findings, and hematologic parameters. The medical records of the patients who had undergone a prostate biopsy were evaluated. Laboratory findings, mpMRI findings, and prostate biopsy results were collected.

View Article and Find Full Text PDF

EM-AUC: A Novel Algorithm for Evaluating Anomaly Based Network Intrusion Detection Systems.

Sensors (Basel)

December 2024

Department of Engineering Management and Systems Engineering, George Washington University, Washington, DC 20052, USA.

Effective network intrusion detection using anomaly scores from unsupervised machine learning models depends on the performance of the models. Although unsupervised models do not require labels during the training and testing phases, the assessment of their performance metrics during the evaluation phase still requires comparing anomaly scores against labels. In real-world scenarios, the absence of labels in massive network datasets makes it infeasible to calculate performance metrics.

View Article and Find Full Text PDF

The early prediction of Alzheimer's disease (AD) risk in healthy individuals remains a significant challenge. This study investigates the feasibility of task-state EEG signals for improving detection accuracy. Electroencephalogram (EEG) data were collected from the Multi-Source Interference Task (MSIT) and Sternberg Memory Task (STMT).

View Article and Find Full Text PDF

The duration of the response to radiotherapy-related treatment is a critical prognostic indicator for patients with nasopharyngeal carcinoma (NPC). Persistent tumor status, including residual tumor presence and early recurrence, is associated with poorer survival outcomes. To address this, we developed a prediction model to identify patients at a high risk of persistent tumor status prior to initiating treatment.

View Article and Find Full Text PDF

: Positron emission tomography (PET) is a valuable tool for the assessment of lymphoma, while artificial intelligence (AI) holds promise as a reliable resource for the analysis of medical images. In this context, we systematically reviewed the applications of deep learning (DL) for the interpretation of lymphoma PET images. : We searched PubMed until 11 September 2024 for studies developing DL models for the evaluation of PET images of patients with lymphoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!