The rise of omics technologies that simultaneously measure thousands of molecules in a complex biological sample represents the core of systems biology. These technologies have profoundly impacted biomarkers and therapeutic targets discovery in the precision medicine era. Systems biology aims to perform a systematic probing of complex interactions in biological systems. Powered by high-throughput omics technologies and high-performance computing, systems biology provides relevant, resolving, and multi-scale overviews from cells to populations. Precision medicine takes advantage of these conceptual and technological developments and is based on two main pillars: the generation of multimodal data and their subsequent modeling. High-throughput omics technologies enable the comprehensive and holistic extraction of biological information, while computational capabilities enable multidimensional modeling and, as a result, offer an intuitive and intelligible visualization. Despite their promise, translating these technologies into clinically actionable tools has been slow. In this contribution, we present the most recent multi-omics data generation and analysis strategies and their clinical deployment in the post-genomic era. Furthermore, medical application challenges of omics-based biomarkers are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.revmed.2022.07.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!