Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Endometrial cancer is the most common gynecologic malignancy in developed countries. The overall risk of recurrence is associated with traditional risk factors.
Methods: Machine learning was used to predict recurrence among women who were diagnosed and treated for endometrial cancer between 2002 and 2012 at elven university-affiliated centers. The median follow-up time was 5 years. The following data were retrieved from the medical records and fed into the algorithm: age, chronic metabolic diseases, family and personal cancer history, hormone replacement therapy use, endometrial thickness, uterine polyp presence, complete blood count results, albumin, Ca-125 level, surgical staging, histology, depth of myometrial invasion, LVSI, grade, pelvic washing cytology, and adjuvant treatment. We used XGBoost algorithm, which fits the training data using decision trees, and can also rate the factors according to their influence on the prediction.
Results: 1935 women were identified of whom 325 had recurrent disease. On the randomly picked samples, the specificity was 55% and the sensitivity was 98%. Our model showed an operating characteristic curve with AUC of 0.84.
Conclusions: A machine learning algorithm presented promising ability to predict recurrence of endometrial cancer. The algorithm provides an opportunity to identify at-risk patients who may benefit from adjuvant therapy, tighter surveillance, and early intervention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jogoh.2022.102466 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!