Introduction: Reducing the protein adsorption of nanoparticles (NPs) as drug carriers to slow their rapid clearance by macrophages uptake is a critical challenge for NPs clinical translational applications. Despite extensive research efforts to inhibit cellular uptake, including covering biological agents or surface chemical coatings to impart "stealth" properties to NPs, their stability remains insufficient.

Objectives: Developed a novel surface modification technology based on a physical infusion engineering approach to achieve persistent inhibition of protein adhesion and cellular uptake by nanocarriers.

Methods: The nanoparticles were prepared based on conventional drug carrier mesoporous silica NPs through a two-step process. A functional nanoscale slippery surface was formed by grafting "liquid-like" brushes on the particles surface, and then a lubricant-entrenched slippery surfaces (LESS) was formed by infusing silicone oil lubricant into the entire surface. Co-incubation with macrophages (in vitro and in vivo) was used to examine the anti-uptake properties of modified NPs. The anti-adhesion properties of LESS coating surfaces to various liquids, proteins and cells were used to analyze the anti-uptake mechanism. Loaded with drugs, combined with tumor models, to evaluate the drug utilization of modified NPs.

Results: Relying on the stable and slippery LESS coating, the modified surface could prevent the adhesion of various liquids and effectively shield against the adhesion of proteins and cells, as well as remarkably reduce macrophage cellular uptake in vitro and in vivo. In addition, the LESS coating does not affect cell activity and allows NPs to be loaded with drugs, significantly improving the utilization of drugs in vitro and in vivo. This allows the NPs to reach to the target tumor site for drug delivery without active clearance by macrophages.

Conclusion: Our research introduces a new nanocarrier technology to improve anti-biofouling performance and stealth efficiency that will facilitate the development of nanomedicines for clinical transformation applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248789PMC
http://dx.doi.org/10.1016/j.jare.2022.08.015DOI Listing

Publication Analysis

Top Keywords

cellular uptake
12
vitro vivo
12
lubricant-entrenched slippery
8
drug utilization
8
proteins cells
8
loaded drugs
8
allows nps
8
nps
7
surface
6
uptake
5

Similar Publications

Ultrasmall Au-GRHa Nanosystem for FL/CT Dual-Mode Imaging-Guided Targeting Photothermal Therapy of Ovarian Cancer.

Anal Chem

January 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.

As the most common and lethal cancer of the female gonads, ovarian cancer (OC) has a grave impact on people's health. OC is asymptomatic, insidious in onset, difficult to diagnose and treat, fast-growing, and easy to metastasize and has poor prognosis and high mortality. How to detect OC as early as possible and treat it without side effects has become a challenging medical problem.

View Article and Find Full Text PDF

Background: Gastrin releasing peptide receptor (GRPR)-directed radiopharmaceuticals for targeted radionuclide therapy may be a very promising addition in prostate and breast cancer patient management. Aiming to provide a GRPR-targeting theranostic pair, we have utilized the Tc-99m/Re-188 radiometal pair, in combination with two bombesin based antagonists, maSSS-PEG2-RM26 and maSES-PEG2-RM26. The two main aims of the current study were (i) to elucidate the influence of the radiometal-exchange on the biodistribution profile of the two peptides and (ii) to evaluate the feasibility of using the [Tc]Tc labeled counterparts for the dosimetry estimation for the [Re]Re-labeled conjugates.

View Article and Find Full Text PDF

Silver N-heterocyclic carbene (NHC) complexes are known to form biscarbene species from monocarbene analogs in protic polar solvents. However, the effect of the respective species of silver NHC complexes on their biological activity against bacteria or cancer cells has not been systematically explored, either in vitro or in vivo. The direct and simple conversion of monocarbene silver N-heterocyclic carbene (NHC) halide complexes (NHC)AgX, (X= Cl, Br) 1a/b - 5a/b to their biscarbene analogues (NHC)2AgX 1c/d - 5c/d is reported.

View Article and Find Full Text PDF

Background: Glucose deprivation inhibits T-cell metabolism and function. Glucose levels are low in the tumor microenvironment of solid tumors and insufficient glucose uptake limits the antitumor response of T cells. Furthermore, glucose restriction can contribute to the failure of chimeric antigen receptor T (CAR-T) cell therapy for solid tumors.

View Article and Find Full Text PDF

Metal ion transport in maize: survival in a variable stress environment.

J Genet Genomics

January 2025

State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:

Maize (Zea mays) is the most widely cultivated crop in the world. Maize production is closely linked to the extensive uptake and utilization of various mineral nutrients. Potassium (K), calcium (Ca), and magnesium (Mg) are essential metallic macronutrients for plant growth and development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!