Fractographic analysis of 35 clinically fractured bi-layered and monolithic zirconia crowns.

J Dent

Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Aarstadveien 19, Bergen N-5009, Norway. Electronic address:

Published: October 2022

Objectives: The aim of this retrieval study was to analyze the fracture features and identify the fracture origin of zirconia-based single crowns that failed during clinical use.

Methods: Thirty-five fractured single crowns were retrieved from dental practices (bi-layered, n = 15; monolithic, n = 20). These were analyzed according to fractographic procedures by optical and scanning electron microscopy to identify fracture patterns and fracture origins. The fracture origins were closely examined. The crown margin thickness and axial wall height were measured.

Results: Three types of failure modes were observed: total fractures, marginal semilunar fractures, and incisal chippings. Most of the crowns (23) had fracture origins at the crown margin and seven of them had defects in the fracture origin area. The exact fracture origin was not possible to identify due to missing parts in four crowns. The crown wall thickness was 20% thinner and wall height 30% shorter in the fracture origin area compared to the opposite side.

Conclusions: The findings in this study show that fractography can reveal fracture origins and fracture modes of both monolithic and bi-layered dental zirconia. The findings indicate that the crown margin on the shortest axial wall is the most common fracture origin site.

Clinical Significance: Crown design factors such as material thickness at the margin, axial wall height and preparation type affects the risk of fracture. It is important to ensure that the crown margins are even and flawless.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdent.2022.104271DOI Listing

Publication Analysis

Top Keywords

fracture origin
20
fracture origins
16
fracture
13
crown margin
12
axial wall
12
wall height
12
identify fracture
8
single crowns
8
origins fracture
8
origin area
8

Similar Publications

Background: The periosteum is the main organ responsible for bone regeneration. Vascularized Periosteal Grafts (VPG) have demonstrated exceptional efficacy and speed in facilitating bone union among children with challenging bone healing conditions. Despite their promising results, the overall impact of these interventions has yet to be comprehensively evaluated through systematic review.

View Article and Find Full Text PDF

Introduction: Neuroblastoma is an embryonic tumor of the peripheral sympathetic nervous system. It is the most common extracranial solid tumor of childhood and accounts for up to 15% of all pediatric cancer fatalities. The manifestation of neuroblastoma is variable depending on the location of the tumor and the presence or absence of paraneoplastic syndromes.

View Article and Find Full Text PDF

Purpose Of The Study: Open (incisional) biopsies have long been accepted as the gold standard in diagnosing bone and soft tissue tumors. However, the main disadvantage of this method is that it can lead to increased contamination, hematoma, infection, and pathological fracture. Compared to open biopsies, percutaneous core needle biopsies are less invasive, do not require hospitalization, have low costs and low complication rates, and there is no need for wound healing in cases that require radiotherapy.

View Article and Find Full Text PDF

Distorting crack-front geometry for enhanced toughness by manipulating bioinspired heterogeneity.

Nat Commun

January 2025

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, China.

Control of crack propagation is crucial to make tougher heterogeneous materials. As a crack interacts with material heterogeneities, its front distorts and adopts complex tortuous configurations. While the behavior of smooth cracks with straight fronts in homogeneous materials is well understood, the toughening by rough cracks with tortuous fronts in heterogeneous materials remains unsolved.

View Article and Find Full Text PDF

This study presents a comprehensive investigation into the intrinsic properties of RNiP (where R = Sm, Eu) filled skutterudite, employing the full-potential linearized augmented plane wave method within density functional theory (DFT) simulations using the WIEN2k framework. Structural, phonon stability, mechanical, electronic, magnetic, transport, thermal, and optical properties are thoroughly explored to provide a holistic understanding of these materials. Initially, the structural stability of SmNiP and EuNiP is rigorously evaluated through ground-state energy calculations obtained from structural optimizations, revealing a preference for a stable ferromagnetic phase over competing antiferromagnetic and non-magnetic phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!