Recent studies suggest that transcript isoforms significantly overlap (approximately 60%) between brain tissue and Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs). Interestingly, 14 cohesion-related genes with variants that cause Cornelia de Lange Syndrome (CdLS) are highly expressed in the brain and LCLs. In this context, we first performed RNA sequencing of LCLs from 22 solved (with pathogenic variants) and 19 unsolved (with no confirmed variants) CdLS cases. Next, an RNA sequencing pipeline was developed using solved cases with two different methods: short variant analysis (for single-nucleotide and indel variants) and aberrant splicing detection analysis. Then, 19 unsolved cases were subsequently applied to our pipeline, and four pathogenic variants in NIPBL (one inframe deletion and three intronic variants) were newly identified. Two of three intronic variants were located at Alu elements in deep-intronic regions, creating cryptic exons. RNA sequencing with LCLs was useful for identifying hidden variants in exome-negative cases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2022.110468DOI Listing

Publication Analysis

Top Keywords

rna sequencing
16
pathogenic variants
12
cornelia lange
8
lange syndrome
8
variants
8
sequencing lcls
8
three intronic
8
intronic variants
8
variants detected
4
rna
4

Similar Publications

Enhancer RNA (eRNA) has emerged as a key player in cancer biology, influencing various aspects of tumor development and progression. In this study, we investigated the role of eRNAs in kidney renal clear cell carcinoma (KIRC), the most common subtype of renal cell carcinoma. Leveraging high-throughput sequencing data and bioinformatics analysis, we identified differentially expressed eRNAs in KIRC and constructed eRNA-centric regulatory networks.

View Article and Find Full Text PDF

Background: Tumor microenvironment (TME) plays a crucial role in tumor growth and metastasis. Exploring biomarkers that are significantly associated with TME can help guide individualized treatment of patients.

Methods: We analyzed the expression and survival of P4HB in pan-cancer through the TCGA database, and verified the protein level of P4HB by the HPA database.

View Article and Find Full Text PDF

Background: The field of single cell technologies has rapidly advanced our comprehension of the human immune system, offering unprecedented insights into cellular heterogeneity and immune function. While cryopreserved peripheral blood mononuclear cell (PBMC) samples enable deep characterization of immune cells, challenges in clinical isolation and preservation limit their application in underserved communities with limited access to research facilities. We present CryoSCAPE (Cryopreservation for Scalable Cellular And Proteomic Exploration), a scalable method for immune studies of human PBMC with multi-omic single cell assays using direct cryopreservation of whole blood.

View Article and Find Full Text PDF

Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.

View Article and Find Full Text PDF

Arrhythmias are a hallmark of myocardial infarction (MI) and increase patient mortality. How insult to the cardiac conduction system causes arrhythmias following MI is poorly understood. Here, we demonstrate conduction system restoration during neonatal mouse heart regeneration versus pathological remodeling at non-regenerative stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!