Evaluation of adsorption of DNA/PEI polyplexes to tubing materials.

Eur J Pharm Biopharm

Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians Universität München, 81377 Munich, Germany. Electronic address:

Published: October 2022

AI Article Synopsis

  • Nucleic acid drugs show potential for treating various diseases, but their effective delivery is a significant challenge.
  • This study examines how different types of tubing used in the pumping process affect the loss of DNA in a polyplex formulation made with DNA and polyethyleneimine (PEI).
  • Results indicate that using specific materials like Pumpsil can prevent DNA loss during pumping, while spray drying impacts PEI content, highlighting the importance of selecting the right tubing for processing nucleic acid drugs.

Article Abstract

Nucleic acid drugs hold great promise for potential treatment of a variety of diseases. But efficient delivery is still the major challenge impeding translation. Nanoformulations based on polymers and lipids require preparation processes such as microfluidic mixing, spray drying or final filling, where pumping is a crucial step. Here, we studied the effect of pumping on the component and overall loss of a binary polyplex formulation made of DNA and polyethyleneimine (PEI). We varied tubing length and material with a focus on subsequent spray drying. Interestingly, product loss increased with the length of silicon tubing. Losses of DNA were prevented by using Pumpsil. The following spray drying process did not affect DNA content but caused PEI loss. Characterization of the different tubing materials revealed similar hydrophobicity of all tubing materials and showed neutral Pumpsil® surface charge, negative Santoprene™ surface charge, and a positive Silicon surface charge. Hence, adsorption of DNA onto tubing material was concluded to be the root cause for DNA loss after pumping and is based upon an interplay of ionic and hydrophobic interactions between polyplexes and tubing material. Overall, selecting the appropriate tubing material for processing nucleic acid nanoparticles is key to achieving satisfactory product quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613709PMC
http://dx.doi.org/10.1016/j.ejpb.2022.08.014DOI Listing

Publication Analysis

Top Keywords

tubing materials
12
spray drying
12
surface charge
12
tubing material
12
tubing
8
polyplexes tubing
8
nucleic acid
8
dna
5
evaluation adsorption
4
adsorption dna/pei
4

Similar Publications

Rapid Preparation of Collagen/Red Blood Cell Membrane Tubes for Stenosis-Free Vascular Regeneration.

ACS Nano

January 2025

Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China.

Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects.

View Article and Find Full Text PDF

Introduction: During a cerebrovascular procedure, diligent care is made to ensure no air is present in lines and connectors. Should air enter the cerebral vasculature, cerebral air emboli can cause worsening neurological outcome or death. This communication outlines how a process change of refrigerating mixed heparin for storage lead to the presence of unintentional air, or off-gassing of the fluid.

View Article and Find Full Text PDF

Fast-neutron reactors are an important representative of Generation IV nuclear reactors, and due to the unique structure and material properties of fast reactor fuel, traditional mechanical cutting methods are not applicable. In contrast, laser cutting has emerged as an ideal alternative. However, ensuring the stability of optical fibers and laser cutting heads under high radiation doses, as well as maintaining cutting quality after irradiation, remains a significant technical challenge.

View Article and Find Full Text PDF

Coated metallic stents are the next generation of metallic stents with improved surface properties. To evaluate the degradation behavior of stents in vitro, different in vitro degradation models can be applied: (i) static immersion test: degradation under static fluid condition, (ii) fluid dynamic test: degradation under flowing fluid, and (iii) electrochemical corrosion test: degradation under the influence of electric potential. During these experimental procedures, stents interact with the simulated blood plasma, and degradation products are formed in the form of depositions on the stent surface, likewise in vivo experiments.

View Article and Find Full Text PDF

Coating Extrusion Characteristics of Thin-Walled Tubes for Catheters Using Thermoplastic Elastomer.

Polymers (Basel)

January 2025

Guangdong Engineering Technology Research Center of Small Household Appliances Innovation Design and Manufacturing, School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China.

During the production of medical thin-walled tubes, a thin coating layer is required. This requirement reduces the cross-sectional clearance area of the straight section flow channel formed by the mandrel and the die, leading to excessive pressure of the polymer melt at the shaping section, elevated die pressure, and backflow of the material melt, all of which directly impact the quality of the coating layer. To address these issues, this study conducted a non-isothermal numerical simulation of coating models both with and without a shaping section.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!