Study on the effect of Cr(VI) removal by stimulating indigenous microorganisms using molasses.

Chemosphere

Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China. Electronic address:

Published: December 2022

Molasses have a prominent effect on the bioremediation of Cr(VI) contaminated groundwater. However, its reaction mechanism is not detailed. In this paper, the removal of Cr(VI) with different carbon sources was compared to explore the effect and mechanism of the molasses. The addition of molasses can completely remove 25 mg/L Cr(VI), while the removal efficiency by glucose or emulsified vegetable oil was only 20%. Molasses could rapidly stimulate the reduction of Cr(VI) by indigenous microorganisms and weakened the toxicity on bacteria. The average removal rate of Cr(VI) was 0.42 mg/L·h, 10 times that of glucose system. Compared with glucose, molasses can remediate Cr(VI) at a higher concentration (50 mg/L), and the carbohydrate acted as microbial nutrients. Direct and indirect reduction acted together, the Fe(II) content in the aquifer medium increased from 1.7% to 4.7%. The addition of molasses extract into glucose system could increased the removal rate of Cr(VI) by 2-3 times, and the ions of molasses had no significant effect on the reduction. Excitation emission matrix fluorescence spectra and electrochemical analysis proved that the molasses contained humic acid-like substances, which had the ability of electron shuttle and improved the reduction rate of Cr(VI). In the process of bioreduction, the composition of molasses changed and the electron transport capacity increased from 104.2 to 446.5 μmol/(g C), but these substances could not be used as electron transport media to continuously enhance the reduction effect. This study is of great significance to fully understand the role and application of molasses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.136229DOI Listing

Publication Analysis

Top Keywords

rate crvi
12
molasses
11
crvi removal
8
indigenous microorganisms
8
crvi
8
addition molasses
8
removal rate
8
glucose system
8
electron transport
8
removal
5

Similar Publications

The introduction of structural defects can improve the charge separation efficiency of metal-organic frameworks (MOFs)-based photocatalysts, which however come with suboptimal decontamination performance, due to steric hindrance and limited binding capacity of the involved modulators. In this work, hydroxyl group capturing the advantages of both worlds was utilized as new modulator to improve the photocatalytic performance of Fe-based defective MOFs. Benefited from its low steric effect and strong coordination bonding capability, hydroxyl-induced defects in Fe-MOF contributed to a nearly 8-fold increase of rate constant for the photocatalytic removal of hexavalent chromium (Cr(VI)) compared to that of pristine one, which also exceeded the defective one induced by acetic acid as modulator.

View Article and Find Full Text PDF

The combined application of dissimilatory iron-reducing bacteria (DIRB) and Fe(III) nanoparticles has garnered widespread interest in the contaminants transformation and removal. The efficiency of this composite system relies on the extracellular electron transfer (EET) process between DIRB and Fe(III) nanoparticles. While modifications to Fe(III) nanoparticles have demonstrated improvements in EET, enhancing DIRB activity also shows potential for further EET enhancement, meriting further investigation.

View Article and Find Full Text PDF

The reuse of electro-coagulated sludge as an adsorbent for Cr(VI) ion reduction was investigated in this study. Electro-coagulated sludge was obtained during the removal of citric acid wastewater by the electrocoagulation process. The following parameters were optimized for Cr(VI) reduction: pH (5-7), initial Cr(VI) concentration (10-50 mg/L), contact time (10-45 min), and adsorbent dosage (0.

View Article and Find Full Text PDF

To tackle the challenges of increasing the efficiency of photocatalysts, a ternary magnetic heterojunction photocatalyst containing spinel cobalt and zinc ferrites, and zeolite (CZZ) was designed and fabricated. The physicochemical properties of the novel photocatalyst were verified using characterization techniques such as XRD, FT-IR, FE-SEM, EDS mapping, N adsorption-desorption, VSM, PL, and UV-Vis DRS. The CZZ photocatalyst exhibited a significant Cr (VI) reduction rate of 0.

View Article and Find Full Text PDF

The structure and active components of the filling material play a critical role in the contamination remediation performance of permeable reactive barriers. However, current methods lack a comprehensive understanding of the structural evolution and long-term performance of these materials during remediation processes. This study utilizes column experiments combined with spectral induced polarization (SIP) monitoring to investigate the effectiveness of zero-valent iron (ZVI), activated carbon (AC), and their composite with sand in removing Cr(VI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!