Green Manganese Ferrite (GMF) and Chemical mediated Manganese Ferrite (CMF) were designed and prepared via in situ co-precipitation method and their adsorption potential was compared using the model dye, Metanil Yellow (MY). Previously, an extract of aquatic macrophyte and metal chloride were employed for the development of ecofriendly GMF. Alternatively, CMF has been synthesized through chemical co-precipitation from metal chloride precursors. Several characterization methods, including PSA, BET, TGA, DSC, FTIR, SEM, VSM, EDX, and XRD, were analyzed to reveal the structural and functional properties of the as-synthesized GMF and CMF. Their MY adsorption performances were tested as the function of the operational conditions such as initial solution pH, temperature, nanocomposite dosage, and dye concentration in a batch mode of operation. The pseudo-second order MY adsorption process fits best in Langmuir model which yielded the maximal monolayer adsorption capacity (q) of 391.34 mg/g for GMF and 271.89 mg/g for CMF. This outperformance of GMF over CMF was observed due to the augmentation of specified surface functional moieties derived from the phyto-constituents of macrophages. Further, the thermodynamic studies confirmed the chemisorptive and exothermic nature of adsorption processes. Conclusively, with the ease of regeneration and reuse potential, GMF and CMF could be viable contenders for scale up and industrial applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.136218 | DOI Listing |
Sci Rep
January 2025
Department of Chemistry, College of Basic Sciences, Yadegar-E-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.
This study presents the development and characterization of manganese ferrite (MnFeO)-based nanocomposites with graphite oxide (GO) and chitosan (CS) for efficient dye removal from textile wastewater and aqueous solution. Comprehensive characterization was performed using FT-IR, Raman, XRD, BET, SEM, DRS and Zeta potential techniques. XRD analysis confirmed the cubic spinel structure of MnFeO, with characteristic peaks at 2θ = 32, 35, 48, 53, 62, and 64°.
View Article and Find Full Text PDFPharmaceutics
October 2024
Medical Bionanotechnology, Faculty of Allied Health Sciences (FAHS), Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai 603103, Tamil Nadu, India.
Background: Superparamagnetic properties and excitation independence have been incorporated into carbon-decorated manganese ferrite nanodots (MnFe@C) to introduce an economical and safer multimodal agent for use in both T1-T2 MRI and fluorescence-based imaging to replace the conventional highly toxic heavy metal contrast agents.
Methods: The surface conjugation of 8-anilino-1-naphthalenesulfonate (ANS) to MnFe@C nanodots (ANS-MnFe@C) enhances both longitudinal and transverse MRI relaxation, improves fluorescence for optical imaging, and increases protein detection sensitivity, showing higher multimodal efficacy in terms of molar relaxivity, radiant efficiencies, and fluorescence sensitivity compared to MnFe@C.
Results: The band gap energy was determined using Tauc's equation to be 3.
Biomater Sci
December 2024
Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P. R. China.
Early diagnosis of liver cancer and appropriate treatment options are critical for obtaining a good prognosis. However, due to technical limitations, it is difficult to make an early and accurate diagnosis of liver cancer, and the traditional imaging model is relatively simple. Therefore, we synthesized multifunctional diagnostic/therapeutic nanoparticles, UMFNPs/Ce6@MBs, loaded with ultra-small manganese ferrite nanoparticles (UMFNPs) and chlorin e6 (Ce6).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China. Electronic address:
Ferroptosis, which depends on iron ions to generate reactive oxygen species (ROS), has been proved to be an effective strategy for cancer therapy. However, cells will initiate different programs, including reducing iron uptake and storing excess iron in ferritin, to lower the intracellular iron concentration. In this work, we reported a simple, one-pot method to synthesize bovine serum albumin stabilized MnFeO nanoparticles (MnFeO@BSA NPs) for ferroptosis therapy of cancer.
View Article and Find Full Text PDFJ Nanobiotechnology
November 2024
Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, School of Life Science and Technology, International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Ministry of Education, Xidian University, Xi'an, 710126, Shaanxi, P. R. China.
Background: Mn-mediated chemodynamic therapy (CDT) has been emerged as a promising cancer therapeutic modality that relies heavily on HCO level in the system. Although the physiological buffers (HCO/HCO) provide certain amounts of HCO, the acidity of the tumor microenvironment (TME) would seriously affect the HCO ionic equilibrium (HCO ⇌ H + HCO). As a result, HCO level in the tumor region is actually insufficient to support effective Mn-mediated CDT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!