Membrane fission during bacterial spore development requires cellular inflation driven by DNA translocation.

Curr Biol

Cellular and Molecular Physiology, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT, USA; Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), 75006 Paris, France. Electronic address:

Published: October 2022

Bacteria require membrane fission for both cell division and endospore formation. In Bacillus subtilis, sporulation initiates with an asymmetric division that generates a large mother cell and a smaller forespore that contains only a quarter of its genome. As the mother cell membranes engulf the forespore, a DNA translocase pumps the rest of the chromosome into the small forespore compartment, inflating it due to increased turgor. When the engulfing membrane undergoes fission, the forespore is released into the mother cell cytoplasm. The B. subtilis protein FisB catalyzes membrane fission during sporulation, but the molecular basis is unclear. Here, we show that forespore inflation and FisB accumulation are both required for an efficient membrane fission. Forespore inflation leads to higher membrane tension in the engulfment membrane than in the mother cell membrane, causing the membrane to flow through the neck connecting the two membrane compartments. Thus, the mother cell supplies some of the membrane required for the growth of the membranes surrounding the forespore. The oligomerization of FisB at the membrane neck slows the equilibration of membrane tension by impeding the membrane flow. This leads to a further increase in the tension of the engulfment membrane, promoting its fission through lysis. Collectively, our data indicate that DNA translocation has a previously unappreciated second function in energizing the FisB-mediated membrane fission under energy-limited conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730832PMC
http://dx.doi.org/10.1016/j.cub.2022.08.014DOI Listing

Publication Analysis

Top Keywords

membrane fission
20
mother cell
20
membrane
16
dna translocation
8
fission forespore
8
forespore inflation
8
membrane tension
8
tension engulfment
8
engulfment membrane
8
membrane flow
8

Similar Publications

WNT4 promotes the symmetric fission of crypt in radiation-induced intestinal epithelial regeneration.

Cell Mol Biol Lett

December 2024

Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.

Background: Radiotherapy for pelvic malignant tumors inevitably causes intestinal tissue damage. The regeneration of intestinal epithelium after radiation injury relies mainly on crypt fission. However, little is known about the regulatory mechanisms of crypt fission events.

View Article and Find Full Text PDF

Gestational exposure to carbon black nanoparticles triggered fetal growth restriction in mice: The mediation of inactivating autophagy-lysosomal degradation system in placental ferroptosis.

Sci Total Environ

December 2024

State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361003, China. Electronic address:

Carbon black nanoparticles (CBNPs) are ubiquitous in our daily ambient environment, either resulting from tobacco combustion or constituting the core of PM. Despite the potential risk of trafficking CBNPs to the fetus, the underlying toxicity of nano-sized carbon black particles in the placenta remains unambiguous. Pregnant C57BL/6 mice received intratracheal instillation of 30 nm or 120 nm CBNPs.

View Article and Find Full Text PDF

While extensive work has examined the mechanisms of mitochondrial fission, it remains unclear whether internal mitochondrial proteins in metazoans play a direct role in the process. Previously, the yeast inner membrane protein Mdm33 was shown to be required for normal mitochondrial morphology and has been hypothesized to be involved in mitochondrial fission. However, it is unknown whether Mdm33 plays a direct role, and it is not thought to have a mammalian homolog.

View Article and Find Full Text PDF

Deafness-associated mitochondrial 12S rRNA mutation reshapes mitochondrial and cellular homeostasis.

J Biol Chem

December 2024

Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China; Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China. Electronic address:

Human mitochondrial 12S ribosomal RNA (rRNA) 1555A>G mutation has been associated with aminoglycoside-induced and nonsyndromic deafness in many families worldwide. Our previous investigation revealed that the m.1555A>G mutation impaired mitochondrial translation and oxidative phosphorylation (OXPHOS).

View Article and Find Full Text PDF

Mitochondrial dysfunction plays an important role in neuroinflammation and cognitive impairment in Alzheimer's disease (AD). Herein, this work designs a mitochondria-targeted micelle CsA-TK-SS-31 (CTS) to block the progression of AD by simultaneously alleviating mitochondrial dysfunction in microglia and neurons. The mitochondria-targeted peptide SS-31 drives cyclosporin A (CsA) to penetrate the blood-brain barrier (BBB) and delivers CsA to mitochondria of microglia and neurons in the brains of 5 × FAD mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!