Nucleophosmin 1 (NPM1) is a multifunctional protein regulating ribosome biogenesis, centrosome duplication and chromatin remodeling. Being a major nucleolar protein, NPM1 can migrate to the nucleus and the cytoplasm, which is controlled by changes of NPM1 oligomerization and interaction with other cell factors. NPM1 forms a stable pentamer with its N-terminal structured domain, where two nuclear export signals and several phosphorylation sites reside. This domain undergoes dissociation and disordering upon Ser48 phosphorylation in the subunit interface. Recent studies indicated that Ser48 is important for NPM1 interaction with other proteins including 14-3-3, the well-known phosphoserine/phosphothreonine binders, but the structural basis for 14-3-3/NPM1 interaction remained unaddressed. By fusing human 14-3-3ζ with an NPM1 segment surrounding Ser48, which was phosphorylated inside Escherichia coli cells by co-expressed protein kinase A, here we obtained the desired protein/phosphopeptide complex and determined its crystal structure. While biochemical data indicated that the interaction is driven by Ser48 phosphorylation, the crystallographic 14-3-3/phosphopeptide interface reveals an NPM1 conformation distinctly different from that in the NPM1 pentamer. Given the canonical phosphopeptide-binding mode observed in our crystal structure, Ser48 emerges as a conditional binding site whose recognition by 14-3-3 proteins is enabled by NPM1 phosphorylation, disassembly and disordering under physiological circumstances.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2022.08.047DOI Listing

Publication Analysis

Top Keywords

npm1
9
structural basis
8
recognition 14-3-3
8
14-3-3 proteins
8
conditional binding
8
binding site
8
ser48 phosphorylation
8
crystal structure
8
ser48
5
basis recognition
4

Similar Publications

Objective: To explore the characteristics of gene mutation in patients with myelodysplastic syndrome (MDS) and its correlation with clinical features.

Methods: From January 2017 to December 2021, 172 patients with MDS in The First Affiliated Hospital of Bengbu Medical University were analyzed retrospectively. Fourteen high frequency genes related to MDS were detected, and the relationship between gene mutation and clinical characteristics of patients as well as revised International Prognostic Scoring System (IPSS-R) was analyzed.

View Article and Find Full Text PDF

Molecular assessment of measurable residual disease (MRD) in NPM1-mutated AML patients is a powerful prognostic tool to identify the risk of relapse. There is limited data regarding MRD-guided decisions against alloSCT in elderly patients and FLT3-ITD co-mutation. We describe the outcome of NPM1-mutated AML patients in whom alloSCT was deferred based on ELN 2017 risk and MRD response.

View Article and Find Full Text PDF

Pluripotent stem cells possess a unique nuclear architecture characterized by a larger nucleus and more open chromatin, which underpins their ability to self-renew and differentiate. Here, we show that the nucleolus-specific RNA helicase DDX18 is essential for maintaining the pluripotency of human embryonic stem cells. Using techniques such as Hi-C, DNA/RNA-FISH, and biomolecular condensate analysis, we demonstrate that DDX18 regulates nucleolus phase separation and nuclear organization by interacting with NPM1 in the granular nucleolar component, driven by specific nucleolar RNAs.

View Article and Find Full Text PDF

Background: The complexity of acute myeloid leukemia (AML) is increasingly recognized through the identification of distinct subgroups, including those with an APL-like immunophenotype characterized by the absence of CD34 and HLA-DR expression, which is widely recognized as a representative immunophenotype in acute promyelocytic leukemia (APL). This study sought to understand the clinical, molecular, and prognostic differences between AML patients with and without this phenotype.

Methods: This study retrospectively analysed 191 de novo non-M3 AML patients and identified 32 patients with the CD34HLA-DR phenotype resembling APL-like immunophenotype, considered as the experimental group.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy characterized by the (oligo)clonal expansion of myeloid progenitor cells. Despite advances in treatment, AML remains challenging to cure, particularly in patients with specific genetic abnormalities. Menin inhibitors have emerged as a promising therapeutic approach, targeting key genetic drivers of AML such as KMT2A rearrangements and NPM1 mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!