Nowadays, the use of pesticides in world agriculture is fundamental. However, it leads to an increase in the illegal sale and smuggling of these products in various parts of the world, mainly in Brazil. Therefore, the development of new analytical methods for screening and analysis of these kind of substances is a relevant issue. We present in this work, for the first time, an electrochemical study and a novel electroanalytical method for determination of fungicide benzovindiflupyr (BENZO). According to our knowledge, the electrochemical behavior of BENZO, as well as its voltammetric determination, have never been reported before. The sensors used here consisted of disposable pencil graphite electrodes (PGEs). On this electrode surface and at optimal pH, BENZO behaved according to a quasi-reversible system and showed two voltammetric peaks, one anodic at E = +0.59 V and another cathodic at E = +0.43 V. The analytical studies utilized BENZO anodic sweep and square-wave adsorptive stripping voltammetry (SWAdSV). All experimental and instrumental parameters were fully investigated and optimized. Under the best conditions, a calibration plot was obtained in the concentration range from 0.10 to 12.5 μmol L. The limits of detection (LOD) and quantification (LOQ) achieved were 0.023 and 0.076 μmol L, respectively. An electrochemical mechanism for BENZO oxidation was also proposed. The method developed here was successfully employed for the qualitative and quantitative forensic analysis of BENZO in smuggled products, showing good accuracy (recoveries ca. 104%) and precision (relative standard deviation < 5%). These data attest the potential for use of this method in forensic area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2022.123873 | DOI Listing |
Polymers (Basel)
January 2025
Jožef Stefan Institute, Department of Physical and Organic Chemistry, Jamova c. 39, SI-1000 Ljubljana, Slovenia.
The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemistry, St. Petersburg University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia.
This study investigates the electrochemical degradation mechanisms of nickel-salen (NiSalen) polymers, with a focus on improving the material's stability in supercapacitor applications. We analyzed the effects of steric hindrance near the nickel center by incorporating different bulky substituents into NiSalen complexes, aiming to mitigate water-induced degradation. Electrochemical performance was assessed using cyclic voltammetry, operando conductance, and impedance measurements, while X-ray photoelectron spectroscopy (XPS) provided insights into molecular degradation pathways.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, China.
The trace detection of pyocyanin (PCN) is crucial for infection control, and electrochemical sensing technology holds strong potential for application in this field. A pivotal challenge in utilizing carbon materials within electrochemical sensors lies in constructing carbon-based films with robust adhesion. To address this issue, a novel composite hydrogel consisting of multi-walled carbon nanotubes/polyvinyl alcohol/phosphotungstic acid (MWCNTs/PVA/PTA) was proposed in this study, resulting in the preparation of a highly sensitive and stable PCN electrochemical sensor.
View Article and Find Full Text PDFSensors (Basel)
January 2025
State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083, China.
Local electrochemical deposition (LECD) is an innovative additive manufacturing technology capable of achieving precise deposition of metallic microstructures. This study delves into the ramifications of pivotal operational parameters-namely, the initial electrode gap, deposition voltage, and additive concentration-on the morphology of zinc microcolumns fabricated through LECD. A holistic approach integrating experimental methodologies with finite element simulations was adopted to scrutinize the influence of these variables on the microcolumns' dimensions, surface morphology, and structural integrity.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland.
Biosensors are transforming point-of-care diagnostics by simplifying the detection process and enabling rapid, accurate testing. This study introduces a novel, reusable biosensor designed for direct viral RNA detection from unfiltered saliva, targeting SARS-CoV-2. Unlike conventional methods requiring filtration, our biosensor leverages a unique electrode design that prevents interference from saliva debris, allowing precise measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!