Online spike sorting via deep contractive autoencoder.

Neural Netw

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. Electronic address:

Published: November 2022

Spike sorting - the process of separating spikes from different neurons - is often the first and most critical step in the neural data analysis pipeline. Spike-sorting techniques isolate a single neuron's activity from background electrical noise based on the shapes of the waveforms obtained from extracellular recordings. Despite several advancements in this area, an important remaining challenge in neuroscience is online spike sorting, which has the potential to significantly advance basic neuroscience research and the clinical setting by providing the means to produce real-time perturbations of neurons via closed-loop control. Current approaches to online spike sorting are not fully automated, are computationally expensive and are often outperformed by offline approaches. In this paper, we present a novel algorithm for fast and robust online classification of single neuron activity. This algorithm is based on a deep contractive autoencoder (CAE) architecture. CAEs are neural networks that can learn a latent state representation of their inputs. The main advantage of CAE-based approaches is that they are less sensitive to noise (i.e., small perturbations in their inputs). We therefore reasoned that they can form the basis for robust online spike sorting algorithms. Overall, our deep CAE-based online spike sorting algorithm achieves over 90% accuracy in sorting unseen spike waveforms, outperforming existing models and maintaining a performance close to the offline case. In the offline scenario, our method substantially outperforms the existing models, providing an average improvement of 40% in accuracy over different datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2022.08.001DOI Listing

Publication Analysis

Top Keywords

spike sorting
24
online spike
20
deep contractive
8
contractive autoencoder
8
robust online
8
existing models
8
sorting
7
online
6
spike
6
sorting deep
4

Similar Publications

AECuration: Automated event curation for spike sorting.

J Neural Eng

January 2025

Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, UNITED STATES.

Spike sorting is a commonly used analysis method for identifying single-units and multi-units from extracellular recordings. The extracellular recordings contain a mixture of signal components, such as neural and non-neural events, possibly due to motion and breathing artifacts or electrical interference. Identifying single and multi-unit spikes using a simple threshold-crossing method may lead to uncertainty in differentiating the actual neural spikes from non-neural spikes.

View Article and Find Full Text PDF

Marked point process variational autoencoder with applications to unsorted spiking activities.

PLoS Comput Biol

December 2024

Communication Science Laboratories, NTT Corporation, Kyoto, Japan.

Spike train modeling across large neural populations is a powerful tool for understanding how neurons code information in a coordinated manner. Recent studies have employed marked point processes in neural population modeling. The marked point process is a stochastic process that generates a sequence of events with marks.

View Article and Find Full Text PDF

Importance: Identifying environmental factors that contribute to disease onset/activity in PV stands to improve clinical outcomes and patient quality of life by strategies aimed at reducing specific disease promoting exposures and promoting personalized clinical management strategies.

Objective: To evaluate the association between hydroxychloroquine use and the development of pemphigus using population level, publicly available, FDA-generated data.

Design: Observational, retrospective, case-control, pharmacovigilance analysis.

View Article and Find Full Text PDF

Neuromorphic-enabled video-activated cell sorting.

Nat Commun

December 2024

State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.

Imaging flow cytometry allows image-activated cell sorting (IACS) with enhanced feature dimensions in cellular morphology, structure, and composition. However, existing IACS frameworks suffer from the challenges of 3D information loss and processing latency dilemma in real-time sorting operation. Herein, we establish a neuromorphic-enabled video-activated cell sorter (NEVACS) framework, designed to achieve high-dimensional spatiotemporal characterization content alongside high-throughput sorting of particles in wide field of view.

View Article and Find Full Text PDF

Background: Single-sensillum recordings are a valuable tool for sensory research which, by their nature, access extra-cellular signals typically reflecting the combined activity of several co-housed sensory neurons. However, isolating the contribution of an individual neuron through spike-sorting has remained a major challenge due to firing rate-dependent changes in spike shape and the overlap of co-occurring spikes from several neurons. These challenges have so far made it close to impossible to investigate the responses to more complex, mixed odour stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!