Mycorrhizae are ubiquitous symbiotic associations between arbuscular mycorrhizal fungi (AMF) and terrestrial plants, in which AMF receive photosynthates from and acquire soil nutrients for their host plants. Plant uptake of soil nitrogen (N) reduces N substrate for microbial processes that generate nitrous oxide (NO), a potent greenhouse gas. However, the underlying microbial mechanisms remain poorly understood, particularly in agroecosystems with high reactive N inputs. We examined how plant roots and AMF affect NO emissions, NO-producing (K and S) and NO-consuming (Z) microbes under normal and high N inputs in conventional (CONV) and organically managed (OM) soils. Here, we show that high N input increased soil NO emissions and the ratio of K to S microbes. Roots and AMF did not affect the (K + S)/Z ratio but significantly reduced NO emissions and the K/S ratio. They reduced the K/S ratio by reducing K- but increasing S- in the CONV soil while decreasing K- but increasing S- in the OM soil. Our results indicate that plant roots and AMF reduced NO emission directly by reducing soil N and indirectly through shifting the community composition of NO-producing microbes in N-enriched agroecosystems, suggesting that harnessing the rhizosphere microbiome through agricultural management might offer additional potential for NO emission mitigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.2c03816 | DOI Listing |
Int J Mol Sci
December 2024
Key Laboratory of Agro-Environment in Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
, one of the world's most destructive invasive species, is known for causing significant ecological and economic harm. While extensive research has focused on its growth characteristics, secondary metabolites, and control measures, its chemical interactions with the environment-particularly the role of flavonoids in shaping soil microbial communities-remain underexplored. In this study, we identified and quantified ten flavonoids from root exudates using UPLC-MS, including Hispidulin, Isorhamnetin, and Mikanin.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, 471023, China; Henan Engineering Research Center of Human Settlements, Luoyang, 471023, China.
As an extension of plant root system, arbuscular mycorrhizal fungi (AMF) extraradical mycelium (ERM) can break the limitation of rhizosphere and play an important role in plant nutrient acquisition. However, it remains unclear whether ERM is smart enough to pick out nutrients while avoiding poison, or is unable to pick out nutrients and have to absorb poisons together. Therefore, the present study employed a compartment device to separate the mycelia from roots, aiming to explore the nutrient absorption pathways of mycelia in molybdenum (Mo) pollution soil after inoculation with AMF in maize and vetch plants.
View Article and Find Full Text PDFMicroorganisms
December 2024
Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil.
is a halophytic pantropical invasive fern growing in mangroves and swamps. Its association with arbuscular mycorrhizal fungi (AMF) has been reported in Asia. AMF and their symbiosis (AM) commonly colonise the absorption organs of terrestrial plants worldwide.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
Silicon (Si) and arbuscular mycorrhizal fungi (AMF) increase plant resistance to various environmental stresses, including heavy metal (and metalloid) toxicity. Although Si and AMF each independently enhance plant tolerance, the nature of their interactions and their combined impacts on nutrient uptake, especially in the context of toxic elements such as arsenic (As), remains to be elucidated. This study investigated AMF-mediated regulation of plant nutrient uptake under As stress using rice, a model Si-accumulating plant.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
Background: Nutrient limitation is a universal phenomenon in terrestrial ecosystems. Root and mycorrhizal are critical to plant nutrient absorption in nutrient-limited ecosystems. However, how they are modified by N and P limitations with advancing vegetation successions in karst forests remains poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!