The efficient isolation and specific discrimination of circulating tumor cells (CTCs) is expected to provide valuable information for understanding tumor metastasis and play an important role in the treatment of cancer patients. In this study, we developed a novel and rapid method for efficient capture and specific identification of cancer cells using hyaluronic acid (HA)-modified SiO-coated magnetic beads in a microfluidic chip. First, polyacrylamide-surfaced SiO-coated magnetic beads (SiO@MBs) were covalently conjugated with HA, and the created HA-modified SiO@MBs (HA-SiO@MBs) display binding specificity to HeLa cells (a human cervical carcinoma cell line) overexpressing CD44 receptors. After incubating the HA-SiO@MBs with cancer cells for 1 h, the mixture of MBs and cells was drawn into a designed microfluidic channel with two inlets and outlets. Through the formation of lamellar flow, cells specifically bound with the HA-SiO@MBs can be separated under an external magnetic field with a capture efficiency of up to 92.0%. The developed method is simple, fast, and promising for CTC separation and cancer diagnostics applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.2c01740 | DOI Listing |
J Am Chem Soc
January 2025
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.
View Article and Find Full Text PDFTIGIT and PVRIG are immune checkpoints co-expressed on activated T and NK cells, contributing to tumor immune evasion. Simultaneous blockade of these pathways may enhance therapeutic efficacy, positioning them as promising dual targets for cancer immunotherapy. This study aimed to develop a bispecific antibody (BsAb) to co-target TIGIT and PVRIG.
View Article and Find Full Text PDFJ Kidney Cancer VHL
December 2024
Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
Central nervous system hemangioblastoma (CNS-HB) is the most common manifestation of von Hippel-Lindau disease (VHL). The main axis of the CNS-HB pathway is the VHL-HIF signaling pathway. Recently, we proposed an alternative VHL-JAK-STAT pathway in CNS-HB.
View Article and Find Full Text PDFTher Adv Med Oncol
January 2025
Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.
Bladder cancer was the 10th most commonly diagnosed cancer worldwide in 2020. Extracellular vesicles (EVs) are nano-sized membranous structures secreted by all types of cells into the extracellular space. EVs can transport proteins, lipids, or nucleic acids to specific target cells.
View Article and Find Full Text PDFFront Immunol
January 2025
School of Medicine, Shanghai University, Shanghai, China.
Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!