The U2AF2 splicing factor, made of two tandem RNA recognition motifs (RRMs) joined by a flexible linker, selects the intronic polypyrimidine sequence of premature mRNA, thus ensuring splicing fidelity. Increasing evidence links mutations of key splicing factors, including U2AF2, to a variety of cancers. Nevertheless, the impact of U2AF2 cancer-associated mutations on polypyrimidine recognition remains unclear. Here, we combined extensive (18 μs-long) all-atom molecular dynamics simulations and dynamical network theory analysis (NWA) of U2AF2, in its wild-type form and in the presence of the six most frequent cancer-associated mutations, bound to a poly-U strand. Our results reveal that the selected mutations affect the pre-mRNA binding at two hot spot regions, irrespectively of where these mutants are placed on the distinct U2AF2 domains. Complementarily, NWA traced the existence of cross-communication pathways, connecting each mutation site to these recognition hot spots, whose strength is altered by the mutations. Our outcomes suggest the existence of a structural/dynamical interplay of the two U2AF2's RRMs underlying the recognition of the polypyrimidine tract and reveal that the cancer-associated mutations affect the polypyrimidine selection by altering the RRMs' cooperativity. This mechanism may be shared by other RNA binding proteins hallmarked, like U2AF2, by multidomain architecture and high plasticity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.2c00511DOI Listing

Publication Analysis

Top Keywords

cancer-associated mutations
16
impact u2af2
8
u2af2 cancer-associated
8
mutations affect
8
u2af2
7
mutations
7
recognition
5
all-atom simulations
4
simulations elucidate
4
elucidate impact
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!