Exosomes are special extracellular vesicles secreted by cells, which are of great significance in the basic research of life science and clinical application and has become a hot research field with rapid development in recent 10 years. Therefore, the isolation and separation of exosomes is particularly important for the research and application of exosomes. This paper aims to review the research progress of exosome isolation and separation methods in recent years, including ultracentrifugation, ultrafiltration, size‑exclusion chromatography, precipitation, immunomagnetic bead capture method, aptamer-based isolation, and isolation methods based on microfluidic technology. It is generally accepted that most of the existing methods have limitations, for example, ultracentrifugation is time-consuming and laborious, and immunomagnetic bead capture method and aptamer-based separation method have small sample processing capacity and high cost. As a result, we also introduce some common situations in which two or more methods are combined for use. Finally, the separation and isolation methods including all those presented in this review were compared and summarized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00232-022-00260-y | DOI Listing |
J Chromatogr A
January 2025
Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA. Electronic address:
Significant progress has been made in the last two decades in producing small (<2μm), high-purity, and low-adsorption particles, columns and system hardware, for ultra-high pressure liquid chromatography (UHPLC). Simultaneously, the recent rapid expansion of cell and gene therapies for treating diseases necessitates novel analytical technologies for analyzing large (>2 kbp) plasmid double-stranded (ds) DNA (which encodes for the in vitro transcription (IVT) of single-stranded (ss) mRNA therapeutics) and dsRNAs (related to IVT production impurities) biopolymers. In this context, slalom chromatography (SC), a retention mode co-discovered in 1988, is being revitalized using the most advanced column technologies for improved determination of the critical quality attributes (CQAs) of such new therapeutics.
View Article and Find Full Text PDFACS Nano
January 2025
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
Metal ions are indispensable to life, as they can serve as essential enzyme cofactors to drive fundamental biochemical reactions, yet paradoxically, excess is highly toxic. Higher-order cells have evolved functionally distinct organelles that separate and coordinate sophisticated biochemical processes to maintain cellular homeostasis upon metal ion stimuli. Here, we uncover the remodeling of subcellular architecture and organellar interactome in yeast initiated by several metal ion stimulations, relying on near-native three-dimensional imaging, cryo-soft X-ray tomography.
View Article and Find Full Text PDFPlant Dis
January 2025
Henan Normal University, College of Life Sciences, Xinxiang, Xinxiang, Henan, China, 453007.
Echinacea purpurea (Eastern Purple Coneflower) is a perennial herbaceous plant belonging to the Asteraceae. It originated from North America and is cultivated all over the world. Extracts of E.
View Article and Find Full Text PDFInorg Chem
January 2025
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia.
The photoinduced reaction of [Pt(NO)] with pyridine or its derivatives (L) was found to result in the formation of [PtL](NO) salts in high yield. This transformation was successfully probed for methyl- and carboxyethyl-substituted pyridines, and the corresponding [PtL](NO) salts were isolated and fully characterized using single-crystal X-ray diffraction (SCXRD). Anation of the [Pt(py)] cationic complex with N was studied by H NMR spectroscopy in aqueous and water/dimethyl sulfoxide solutions of [Pt(py)](NO).
View Article and Find Full Text PDFSyst Parasitol
January 2025
Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Metropolitan University, Izumisano, Osaka, 598-8531, Japan.
The nutria (Myocastor coypus) is a semiaquatic rodent that originally inhabited South America. However, the animals have spread to different continents as alien species, and their numbers are quickly increasing, especially in North America, Europe, and Eastern Asia including Japan. Although nutrias have been suggested to serve as reservoirs for pathogens, including parasites, there have been few reports on this subject.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!