A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative assessment of viral dynamic models for SARS-CoV-2 for pharmacodynamic assessment in early treatment trials. | LitMetric

Pharmacometric analyses of time series viral load data may detect drug effects with greater power than approaches using single time points. Because SARS-CoV-2 viral load rapidly rises and then falls, viral dynamic models have been used. We compared different modelling approaches when analysing Phase II-type viral dynamic data. Using two SARS-CoV-2 datasets of viral load starting within 7 days of symptoms, we fitted the slope-intercept exponential decay (SI), reduced target cell limited (rTCL), target cell limited (TCL) and TCL with eclipse phase (TCLE) models using nlmixr. Model performance was assessed via Bayesian information criterion (BIC), visual predictive checks (VPCs), goodness-of-fit plots, and parameter precision. The most complex (TCLE) model had the highest BIC for both datasets. The estimated viral decline rate was similar for all models except the TCL model for dataset A with a higher rate (median [range] day : dataset A; 0.63 [0.56-1.84]; dataset B: 0.81 [0.74-0.85]). Our findings suggest simple models should be considered during pharmacodynamic model development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9538685PMC
http://dx.doi.org/10.1111/bcp.15518DOI Listing

Publication Analysis

Top Keywords

viral dynamic
12
viral load
12
dynamic models
8
target cell
8
cell limited
8
viral
7
models
5
comparative assessment
4
assessment viral
4
models sars-cov-2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!