Spin crossover (SCO) is one of the most studied magnetic bistable phenomena because of its application in the field of multifunctional magnetic materials. Fe complexes in a N coordination environment have been the most well-studied in terms of their SCO behaviour. Other coordination environments, notably the NO coordination environment, has also been quite effective in inducing SCO behaviour in the corresponding Fe complexes. This review deals with such systems. The three ligand families that are discussed are: Jager type ligands, hydrazone based ligands and tridentate ligands having salicylaldehyde derivatives. These ligands allow the assembly of both mononuclear and multinuclear complexes that exhibit cooperative spin transitions. Also, Fe complexes obtained from some of these ligands are multifunctional and exhibit a coupling of optical and magnetic properties. Most of the Fe complexes obtained from these families of ligands are charge neutral which allows easy surface deposition. Further, modulation of these ligand families allows a fine tuning of the ligand field strength which results in varying SCO behavior. In addition some of the Fe complexes derived from these ligands exhibit a light induced excited spin state trapping (LIESST) effect. All of the above aspects are reviewed in this review.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2dt01967a | DOI Listing |
J Am Chem Soc
January 2025
Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
The integration of spin crossover (SCO) magnetic switching and electric polarization properties can engender intriguing correlated magnetic and electric phenomena. However, achieving substantial SCO-induced polarization change through rational molecular design remains a formidable challenge. Herein, we present a polar Fe(II) compound that exhibits substantial polarization change in response to a thermally regulated low-spin ↔ high-spin transition.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
IISER Kolkata: Indian Institute of Science Education and Research Kolkata, Department of Chemical Sciences, Mohanpur, 741246, Nadia, INDIA.
Chiral allyl amines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allyl amines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry, University of Melbourne, Parkville 3010, Victoria, Australia.
A search for switchable molecules has afforded a family of cobalt complexes featuring derivatives of 2-aminophenol: 4,6-di--butyl aminophenol (HL) and 2-anilino-4,6-di--butyl aminophenol (HL). The heteroleptic cobalt complexes incorporate a Metpa ligand (tpa = tris(2-pyridylmethyl)amine; = 0-3), which involves the methylation of the 6-position of the pyridine ring). Eight members of this family have been synthesized and characterized: [Co(HL)(tpa)](BPh) (), [Co(HL)(Metpa)](BPh) (), [Co(L)(Metpa)](BPh) (), [Co(HL)(Metpa)](BPh) (), [Co(L)(Metpa)](BPh) (), [Co(HL)(tpa)] (BPh)(ClO) (), [Co(L)(tpa)](BPh)(ClO) () and [Co(HL)(Metpa)](BPh) (), where the aminophenol-derived ligands are monoanionic in either the open shell radical iminosemiquinonate (L) or the closed shell protonated aminophenolate (HL).
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany.
Superdiffusion is surprisingly easily observed even in systems without the integrability underpinning this phenomenon. Indeed, the classical Heisenberg chain-one of the simplest many-body systems, and firmly believed to be nonintegrable-evinces a long-lived regime of anomalous, superdiffusive spin dynamics at finite temperature. Similarly, superdiffusion persists for long timescales, even at high temperature, for small perturbations around a related integrable model.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada.
Landau-Zener tunneling, which describes the transition in a two-level system during a sweep through an anti-crossing, is a model applicable to a wide range of physical phenomena. Realistic quantum systems are affected by dissipation due to coupling to their environments. An important aspect of understanding such open quantum systems is the relative energy scales of the system itself and the system-environment coupling, which distinguishes the weak- and strong-coupling regimes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!