Accumulating evidence suggests that drug repurposing has drawn attention as an anticipative strategy for controlling tuberculosis (TB), considering the dwindling drug discovery and development pipeline. In this study, we explored the antigout drug febuxostat and evaluated its antibacterial activity against Mycobacterium species. Based on MIC evaluation, we found that febuxostat treatment significantly inhibited mycobacterial growth, especially that of Mycobacterium tuberculosis (Mtb) and its phylogenetically close neighbors, M. bovis, M. kansasii, and M. shinjukuense, but these microorganisms were not affected by allopurinol and topiroxostat, which belong to a similar category of antigout drugs. Febuxostat concentration-dependently affected Mtb and durably mediated inhibitory functions (duration, 10 weeks maximum), as evidenced by resazurin microtiter assay, time-kill curve analysis, phenotypic susceptibility test, and the Bactec MGIT 960 system. Based on these results, we determined whether the drug shows antimycobacterial activity against Mtb inside murine bone marrow-derived macrophages (BMDMs). Notably, febuxostat markedly suppressed the intracellular growth of Mtb in a dose-dependent manner without affecting the viability of BMDMs. Moreover, orally administered febuxostat was efficacious in a murine model of TB with reduced bacterial loads in both the lung and spleen without the exacerbation of lung inflammation, which highlights the drug potency. Taken together, unexpectedly, our data demonstrated that febuxostat has the potential for treating TB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487535PMC
http://dx.doi.org/10.1128/aac.00762-22DOI Listing

Publication Analysis

Top Keywords

antibacterial activity
8
antigout drug
8
mycobacterium tuberculosis
8
febuxostat
7
drug
6
novel antibacterial
4
activity febuxostat
4
febuxostat fda-approved
4
fda-approved antigout
4
drug mycobacterium
4

Similar Publications

Novel Foamed Magnesium Phosphate Antimicrobial Bone Cement for Bone Augmentation.

J Biomed Mater Res B Appl Biomater

January 2025

Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.

In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities.

View Article and Find Full Text PDF

In recent years, Imidazothiazole-Chalcone conjugates have emerged as notable pharmacophores with potential applications in discovering biologically active compounds. This study focuses on synthesizing novel imidazo[2,1-b]thiazole chalcone derivatives through a facile and conventional process adhering to several principles of green chemistry, facilitating scalable production. The synthesized compounds underwent comprehensive spectroscopic analysis, including 1H NMR, 13C NMR, LC-MS, and FT-IR techniques.

View Article and Find Full Text PDF

Chitosan (CHT) is a known piezoelectric biomacromolecule; however, its usage is limited due to rapid degradation in an aqueous system. Herein, we prepared CHT film via a solvent casting method and cross-linked in an alkaline solution. Sodium hydroxide facilitated deprotonation, leading to increased intramolecular hydrogen bonding and mechanical properties.

View Article and Find Full Text PDF

The emergence of multidrug-resistant (MDR) pathogens, coupled with the limited effectiveness of existing antibiotics in eradicating biofilms, presents a significant threat to global health care. This critical situation underscores the urgent need for the discovery and development of antimicrobial agents. Recently, peptide-derived antimicrobial nanomaterials have shown promise in combating such infections.

View Article and Find Full Text PDF

Characterization and genomic insights into bacteriophages Kpph1 and Kpph9 against hypervirulent carbapenem-resistant .

Virulence

December 2025

Jiangxi Institute of Respiratory Disease, Jiangxi Clinical Research Center for Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China.

The increasing incidence of infections attributed to hypervirulent carbapenem-resistant (Hv-CRKp) is of considerable concern. Bacteriophages, also known as phages, are viruses that specifically infect bacteria; thus, phage-based therapies offer promising alternatives to antibiotic treatments targeting Hv-CRKp infections. In this study, two isolated bacteriophages, Kpph1 and Kpph9, were characterized for their specificity against the Hv-CRKp NUHL30457 strain that possesses a K2 capsule serotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!