Here, we carried out a dipole moment engineering to convert a classical BN-PAH framework into a formal acceptor for the construction of bipolar OLED host materials, with this engineering involving the introduction of two "donor wings". The installation of the donors transformed the small local dipole moment of the BN-PAH framework into a large charge-transfer dipole moment, leading to a more separated frontier molecular orbital distribution beneficial for bipolar transport as well as a higher glass-transition temperature beneficial for morphological stability. The assembled donor-acceptor-donor (D-A-D) triads exhibited promising potential as universal bipolar hosts for the fabrication of OLEDs of various categories with wide color gamuts, such as blue multiple-resonance OLEDs (MR-OLEDs), green thermally activated delayed-fluorescence OLEDs (TADF-OLEDs), yellow TADF-sensitized fluorescence OLEDs (TSF-OLEDs), and red phosphorescence OLEDs (Ph-OLEDs).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2mh00856d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!