Background: α-1,6 Fucosyltransferase (FUT8) appears to play an essential role in the pathogenesis of renal fibrosis. However, it remained unknown whether FUT8 also contributed to renal fibrosis in immunoglobulin A nephropathy (IgAN). In the present study, we explored the association of serum FUT8 activity with renal tubulointerstitial injury in IgAN patients.

Methods: Serum FUT8 activity was measured in 135 IgAN patients and 68 healthy controls from January 2016 to December 2018. The relationships of serum FUT8 activity with clinical and pathological features were analyzed.

Results: Relative to healthy controls, IgAN patients had significantly higher serum FUT8 activity and upregulation of renal FUT8 protein (p < .05). Among IgAN patients, there was a positive correlation of serum FUT8 activity with renal FUT8 protein expression (p < .05). Multivariable logistic regression analyses showed that serum FUT8 activity was significantly associated with serum creatinine and eGFR (p < .05). Based on a cut-off value determined from ROC curve analysis, we divided IgAN patients into a low serum FUT8 activity group (≤12.2 pmol/h/mL, n = 40) and a high serum FUT8 activity group (>12.2 pmol/h/ml, n = 95). The high serum FUT8 activity group had a higher Oxford T score, increased inflammatory cell infiltration, more severe fibrosis and poor renal function (p < .05).

Conclusion: Serum FUT8 activity was positive association with renal tubulointerstitial injury in IgAN patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9425009PMC
http://dx.doi.org/10.1002/iid3.686DOI Listing

Publication Analysis

Top Keywords

serum fut8
20
fut8 activity
20
association serum
8
fut8
8
activity renal
8
renal tubulointerstitial
8
tubulointerstitial injury
8
renal fibrosis
8
igan patients
8
healthy controls
8

Similar Publications

Recent findings in glycobiology revealed direct evidence of the involvement of oligosaccharide changes in human diseases, including liver diseases. Fucosylation describes the attachment of a fucose residue to a glycan or glycolipid. We demonstrated that fucosylated proteins are useful serum biomarkers for nonalcoholic fatty liver disease.

View Article and Find Full Text PDF

Core fucosylation within the Fc-FcγR degradation pathway promotes enhanced IgG levels via exogenous L-fucose.

J Biol Chem

August 2024

Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan. Electronic address:

α1,6-Fucosyltransferase (Fut8) is the enzyme responsible for catalyzing core fucosylation. Exogenous L-fucose upregulates fucosylation levels through the GDP-fucose salvage pathway. This study investigated the relationship between core fucosylation and immunoglobulin G (IgG) amounts in serum utilizing WT (Fut8), Fut8 heterozygous knockout (Fut8), and Fut8 knockout (Fut8) mice.

View Article and Find Full Text PDF

Chinese hamster ovary (CHO) cells are the commonly used mammalian host system to manufacture recombinant proteins including monoclonal antibodies. However unfavorable non-human glycoprofile displayed on CHO-produced monoclonal antibodies have negative impacts on product quality, pharmacokinetics, and therapeutic efficiency. Glycoengineering such as genetic elimination of genes involved in glycosylation pathway in CHO cells is a viable solution but constrained due to longer timeline and laborious workflow.

View Article and Find Full Text PDF

Alpha-(1,6)-fucosyltransferase (FUT8) has been found to play a role in modulating the central immune system and inflammatory responses. Limited studies have assessed the correlations between serum FUT8 levels and various non-motor symptoms associated with early Parkinson's disease (PD). Therefore, our research aims to investigate the associations between serum FUT8 levels and symptoms such as smell dysfunction, sleep duration, sleep problems, and MMSE scores in PD patients.

View Article and Find Full Text PDF

infection and microRNAs (miRNAs) are closely associated with colorectal cancer (CRC) development, but the mechanism by which regulates tumor-suppressive miRNAs via exosomes and facilitates CRC metastasis remains unclear. Here, we identified that infection significantly increased exosomal miR-122-5p levels in the serum of CRC patients and CRC cell culture supernatants through two miRNA panels of high-throughput sequencing and RT-qPCR analysis. In -infected patients, the serum exosomal levels of miR-122-5p were negatively associated with their expression levels of tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!