Background/aim: Ewing sarcoma is a highly malignant tumour predominantly found in children. The radiological signs of this malignancy can be mistaken for acute osteomyelitis. These entities require profoundly different treatments and result in completely different prognoses. The purpose of this study was to develop an artificial intelligence algorithm, which can determine imaging features in a common radiograph to distinguish osteomyelitis from Ewing sarcoma.

Materials And Methods: A total of 182 radiographs from our Sarcoma Centre (118 healthy, 44 Ewing, 20 osteomyelitis) from 58 different paediatric (≤18 years) patients were collected. All localisations were taken into consideration. Cases of acute, acute on chronic osteomyelitis and intraosseous Ewing sarcoma were included. Chronic osteomyelitis, extra-skeletal Ewing sarcoma, malignant small cell tumour and soft tissue-based primitive neuroectodermal tumours were excluded. The algorithm development was split into two phases and two different classifiers were built and combined with a Transfer Learning approach to cope with the very limited amount of data. In phase 1, pathological findings were differentiated from healthy findings. In phase 2, osteomyelitis was distinguished from Ewing sarcoma. Data augmentation and median frequency balancing were implemented. A data split of 70%, 15%, 15% for training, validation and hold-out testing was applied, respectively.

Results: The algorithm achieved an accuracy of 94.4% on validation and 90.6% on test data in phase 1. In phase 2, an accuracy of 90.3% on validation and 86.7% on test data was achieved. Grad-CAM results revealed regions, which were significant for the algorithms decision making.

Conclusion: Our AI algorithm can become a valuable support for any physician involved in treating musculoskeletal lesions to support the diagnostic process of detection and differentiation of osteomyelitis from Ewing sarcoma. Through a Transfer Learning approach, the algorithm was able to cope with very limited data. However, a systematic and structured data acquisition is necessary to further develop the algorithm and increase results to clinical relevance.

Download full-text PDF

Source
http://dx.doi.org/10.21873/anticanres.15937DOI Listing

Publication Analysis

Top Keywords

ewing sarcoma
24
detection differentiation
8
ewing
8
osteomyelitis
8
acute osteomyelitis
8
osteomyelitis paediatric
8
osteomyelitis ewing
8
chronic osteomyelitis
8
transfer learning
8
learning approach
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!