A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Undergraduate Medical Students' and Interns' Knowledge and Perception of Artificial Intelligence in Medicine. | LitMetric

Purpose: Artificial intelligence (AI) is playing an increasingly important role in healthcare and health professions education. This study explored medical students' and interns' knowledge of artificial intelligence (AI), perceptions of the role of AI in medicine, and preferences around the teaching of AI competencies.

Methods: In this cross-sectional study, the authors used a previously validated Canadian questionnaire and gathered responses from students and interns at KIST Medical College, Nepal. Face validity and reliability of the tool were assessed by administering the questionnaire to 20 alumni as a pilot sample (Cronbach alpha = 0.6). Survey results were analyzed quantitatively (p-value = 0.05).

Results: In total 216 students (37% response rate) participated. The median AI knowledge score was 11 (interquartile range 4), and the maximum possible score was 25. The score was higher among final year students (p = 0.006) and among those with additional training in AI (p = 0.040). Over 49% strongly agreed or agreed that AI will reduce the number of jobs for doctors. Many expect AI to impact their specialty choice, felt the Nepalese health-care system is ill-equipped to deal with the challenges of AI, and opined every student of medicine should receive training on AI competencies.

Conclusion: The lack of coverage of AI and machine learning in Nepalese medical schools has resulted in students being unaware of AI's impact on individual patients and the healthcare system. A high perceived willingness among respondents to learn about AI is a positive sign and a strong indicator of futuristic successful curricula changes. Systematic implementation of AI in the Nepalese healthcare system can be a potential tool in addressing health-care challenges related to resource and manpower constraints. Incorporating topics related to AI and machine learning in medical curricula can be a useful first step.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419901PMC
http://dx.doi.org/10.2147/AMEP.S368519DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
12
medical students'
8
students' interns'
8
interns' knowledge
8
machine learning
8
healthcare system
8
undergraduate medical
4
knowledge perception
4
perception artificial
4
intelligence medicine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!