Therapy-related myeloid neoplasm (tMN) is considered a direct consequence of DNA damage in hematopoietic stem cells. Despite increasing recognition that altered stroma can also drive leukemogenesis, the functional biology of the tMN microenvironment remains unknown. We performed multiomic (transcriptome, DNA damage response, cytokine secretome and functional profiling) characterization of bone marrow stromal cells from tMN patients. Critically, we also compared (i) patients with myeloid neoplasm and another cancer but without cytotoxic exposure, (ii) typical primary myeloid neoplasm, and (iii) age-matched controls to decipher the microenvironmental changes induced by cytotoxics vs. neoplasia. Strikingly, tMN exhibited a profoundly senescent phenotype with induction of CDKN1A and β-Galactosidase, defective phenotype, and proliferation. Moreover, tMN stroma showed delayed DNA repair and defective adipogenesis. Despite their dormant state, tMN stromal cells were metabolically highly active with a switch toward glycolysis and secreted multiple pro-inflammatory cytokines indicative of a senescent-secretory phenotype that inhibited adipogenesis. Critically, senolytics not only eliminated dormant cells, but also restored adipogenesis. Finally, sequential patient sampling showed senescence phenotypes are induced within months of cytotoxic exposure, well prior to the onset of secondary cancer. Our data underscores a role of senescence in the pathogenesis of tMN and provide a valuable resource for future therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9613466PMC
http://dx.doi.org/10.1038/s41375-022-01686-yDOI Listing

Publication Analysis

Top Keywords

myeloid neoplasm
16
cytotoxic exposure
12
therapy-related myeloid
8
dna damage
8
stromal cells
8
tmn
7
senescence stress
4
stress secretome
4
secretome hallmark
4
hallmark therapy-related
4

Similar Publications

is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

The identification of immune environments and cellular interactions in the colon microenvironment is essential for understanding the mechanisms of chronic inflammatory disease. Despite occurring in the same organ, there is a significant gap in understanding the pathophysiology of ulcerative colitis (UC) and colorectal cancer (CRC). Our study aims to address the distinct immunopathological response of UC and CRC.

View Article and Find Full Text PDF

The clinical features and outcomes of elderly patients with acute myeloid leukemia: a real word research.

Clin Exp Med

January 2025

Medical Center of Hematology, Xinqiao Hospital of Army Medical University; Chongqing Key Laboratory of Hematology and Microenvironment; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, No.83 Xinqiao Main Street, Shapingba District, 400037, China.

The aim of this study was to investigate the clinical features and outcomes of elderly patients with acute myeloid leukemia (AML) from a real word research. The clinical data of 223 consecutive elderly patients (aged ≥ 60 years) who were newly diagnosed with AML at our medical center between July 2017 and June 2022, including their clinical characteristics, genetic mutations, and survival outcomes, were retrospectively analyzed. Among the 223 patients (median age 67 years), 180 (80.

View Article and Find Full Text PDF

The tumor immune microenvironment (TiME) of human central nervous system (CNS) tumors remains to be comprehensively deciphered. Here, we employed flow cytometry and RNA sequencing analysis for a deep data-driven dissection of a diverse TiME and to uncover noncanonical immune cell types in human CNS tumors by using seven tumors from five patients. Myeloid subsets comprised classical microglia, monocyte-derived macrophages, neutrophils, and two noncanonical myeloid subsets: CD3 myeloids and CD19 myeloids.

View Article and Find Full Text PDF

Targeting immune checkpoints on myeloid cells: current status and future directions.

Cancer Immunol Immunother

January 2025

Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China.

Myeloid cells accumulate extensively in most tumors and play a critical role in immunosuppression of the tumor microenvironment (TME). Like T cells, myeloid cells also express immune checkpoint molecules, which induce the immunosuppressive phenotype of these cells. In this review, we summarize the tumor-promoting function and immune checkpoint expression of four types of myeloid cells: macrophages, neutrophils, dendritic cells, and myeloid-derived suppressor cells, which are the main components of the TME.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!