Biofilms are increasingly recognised as a critical global issue in a multitude of industries impacting health, food and water security, marine sector, and industrial processes resulting in estimated economic cost of $5 trillion USD annually. A major barrier to the translation of biofilm science is the gap between industrial practices and academic research across the biofilms field. Therefore, there is an urgent need for biofilm research to notice and react to industrially relevant issues to achieve transferable outputs. Regulatory frameworks necessarily bridge gaps between different players, but require a clear, science-driven non-biased underpinning to successfully translate research. Here we introduce a 2-dimensional framework, termed the Biofilm Research-Industrial Engagement Framework (BRIEF) for classifying existing biofilm technologies according to their level of scientific insight, including the understanding of the underlying biofilm system, and their industrial utility accounting for current industrial practices. We evidence the BRIEF with three case studies of biofilm science across healthcare, food & agriculture, and wastewater sectors highlighting the multifaceted issues around the effective translation of biofilm research. Based on these studies, we introduce some advisory guidelines to enhance the translational impact of future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9424220 | PMC |
http://dx.doi.org/10.1038/s41522-022-00327-7 | DOI Listing |
Food Sci Nutr
January 2025
Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch Islamic Azad University Semnan Iran.
Dental caries is a highly prevalent chronic condition globally. In recent years, scientists have turned to natural compounds such as plant extracts as an alternative to address concerns related to biofilm-mediated disease transmission, increasing bacterial resistance, and the adverse impacts of antibiotics. Consequently, this study investigated the antimicrobial properties of ethanolic, hydroethanolic, and aqueous extracts of L.
View Article and Find Full Text PDFRSC Med Chem
October 2024
Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
Bacterial infections pose a threat to human and animal health, and the formation of biofilm exacerbates the microbial threat. New antimicrobial agents to address this challenge are much needed. In this study, several new amphoteric compounds derived from the natural product coumarin were designed and synthesized by mimicking the structure and function of antimicrobial peptides.
View Article and Find Full Text PDFBiofilm
June 2025
State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China.
is a prevalent pathogen in both humans and marine species, exhibiting high adaptability to various adverse environmental conditions. Our previous studies have shown that Δ formed three enhanced biofilm types, including spectacular surface-attached biofilm (SB), scattered pellicle biofilm (PB), and colony rugosity. However, the precise mechanism through which regulates biofilm formation has remained unclear.
View Article and Find Full Text PDFJ Periodontal Res
January 2025
College of Dentistry, University of Kentucky, Lexington, Kentucky, USA.
Aim: The clinical outcomes of a variety of surgical procedures highly depend on tissue repair and show high variability among patients. There is a gap in the literature on how the host inflammatory response, the microbiome, and the interplay between them can influence oral mucosa healing. In this pilot study, we aimed to evaluate the microbiome and biomarkers profiles in patients who had desired versus undesired wound healing in the palatal mucosa.
View Article and Find Full Text PDFAvian Pathol
January 2025
School of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China.
UhpAB increases the pathogenicity of APEC.UhpAB activates the expression of virulence genes , , , and .UhpAB promotes biofilm formation and enhances stress tolerance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!