Three novel HLA-C alleles HLA-C*01:218, -C*03:550 and -C*05:01:60 alleles detected during routine next generation sequencing.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tan.14792DOI Listing

Publication Analysis

Top Keywords

three novel
8
novel hla-c
8
hla-c alleles
8
alleles hla-c*01218
8
identification three
4
hla-c*01218 hla-c*03550
4
hla-c*03550 hla-c*050160
4
hla-c*050160 three
4
hla-c*01218 -c*03550
4
-c*03550 -c*050160
4

Similar Publications

Perfusion Capacity as a Predictive Index for Assessing Visual Functional Recovery in Patients With Idiopathic Epiretinal Membrane.

Transl Vis Sci Technol

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.

Purpose: This study investigates the association between visual function and retinal vasculature metrics, particularly perfusion capacity (PC), in eyes with idiopathic epiretinal membrane (iERM), using optical coherence tomography angiography (OCTA).

Methods: This retrospective study includes 30 eyes from 30 iERM patients who had surgery, with a three-month follow-up period. In addition, 28 eyes from 28 healthy individuals served as a control group.

View Article and Find Full Text PDF

Non-canonical Wnt signaling pathway activated NFATC3 promotes GDF15 expression in MASH: prospective analyses of UK biobank proteomic data.

Hepatol Int

January 2025

National Clinical Research Center for Digestive Disease, State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

Background: Our previous research demonstrated that growth differentiation factor 15 (GDF15) exhibited superior predictive capability for metabolic dysfunction-associated steatohepatitis (MASH) development with an AUC of 0.86 at 10 years before disease diagnosis. However, the specific pathways and molecular mechanisms associated with GDF15 expression during MASH development remain to be fully investigated in humans.

View Article and Find Full Text PDF

Diabetes affects approximately 422 million people worldwide, leading to 1.5 million deaths annually and causing severe complications such as kidney failure, neuropathy, and cardiovascular disease. Aldose reductase (AR), a key enzyme in the polyol pathway, is an important therapeutic target for managing these complications.

View Article and Find Full Text PDF

A novel analytical method was designed and developed that exhibited ultraviolet-visible (UV-Vis), fluorescence (FL), and resonance Rayleigh scattering (RRS) signals for straightforward and comprehensive determination of monoamine oxidase B (MAO-B) using polyethylenimine-functionalized silver nanoparticles (PEI-Ag NPs). Through a facile one-step experiment, and NaOH assisted, in an aqueous solution of 100 ℃ for 40 min PEI reacted with AgNO to generate PEI-Ag NPs with a yellow color and weak blue fluorescence. Interestingly, phenylacetaldehyde (PAA), a specific product of MAO-B, causes significant enhancement of the three optical signals of UV-Vis, FL, and RRS.

View Article and Find Full Text PDF

Novel technique and outcomes of umbilical reconstruction during cytoreductive surgery; a multi-centre study.

Tech Coloproctol

January 2025

Peritonectomy and Liver Cancer Unit, Department of Surgery, St George Hospital, Kogarah, NSW, Australia.

Background: The goal of cytoreductive surgery for peritoneal malignancy is to remove all macroscopic disease, which occasionally requires the excision of the umbilicus. While the absence of the umbilicus can be aesthetically undesirable for patients, umbilical reconstruction is rarely performed due to the perceived complexity and increased risk of wound infections (Sakata et al. in Colorectal Dis 23:1153-1157, 2021).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!