The concentration of tumor biomarker Mucin 1 (MUC 1) is highly related with many diseases, which can be employed for the early diagnosis of cancer. In this paper, an electrochemical ratiometric aptasensor with intrinsic self-calibration property for the detection of MUC 1 is presented. In this paper, Co-MOFs themselves were employed as signal substances. This strategy was fabricated by using gold nanoparticles@black phosphorus (BP) as the substrate on the electrode, followed by modification of DNA nanotetrahedrons (DTN) via Au-S bond. The terminal of DTN contains MUC 1 aptamer. In the presence of MUC 1, the signal of DNA-labeled Co-MOFs can be detected. The current signal of Co-MOFs increased and that of thionine (as reference) was unchanged upon the addition of MUC 1. Thus, an intrinsic self-calibration aptasensor was achieved. In order to simplify the modification procedure, the electrolyte solution thionine was employed as an inner reference probe. Moreover, coupling of the hybridization chain reaction (HCR) with these MOFs signal tags presents an enzyme-free method for signal amplification, endowing the proposed ratiometric biosensor detection with high reproducibility and high sensitivity. The current ratio (I/I) remained stable over 30 individual measurements performed on ten different working electrodes. Even ten repeated scans performed on a single electrode exhibited a constant current ratio. The electrochemical ratiometric aptasensor is highly sensitivity for MUC 1 with the detection limit of 1.34 fM. Our proposed ratiometric sensor has great potential for the detection of cancer-related biomarkers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2022.340219DOI Listing

Publication Analysis

Top Keywords

electrochemical ratiometric
12
ratiometric aptasensor
12
intrinsic self-calibration
12
self-calibration property
8
proposed ratiometric
8
current ratio
8
muc
6
ratiometric
5
signal
5
ultrasensitive dual-signal
4

Similar Publications

Advanced cortisol detection: A cMWCNTs-enhanced MB@Zr-MOF ratiometric electrochemical aptasensor.

Bioelectrochemistry

January 2025

School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China. Electronic address:

A ratiometric electrochemical aptasensor was developed for ultra-sensitive detection of cortisol using aptamer (Apt) as recognition element, methylene blue (MB) as signal probe, and zirconium metal-organic framework (Zr-MOF) as carrier loaded with abundant MB for signal amplification. The carboxylated multi-walled carbon nanotubes (cMWCNTs)-modified Au electrode showed excellent electrochemical performance to immobilize complementary DNA (cDNA) for hybridizing with MB@Zr-MOF-Apt via amide bonds. In the presence of cortisol, it would compete with cDNA for binding the Apt, resulting in the detachment of MB@Zr-MOF-Apt complex from the electrode surface, and the electrochemical signal of MB was decreased, while that of [Fe(CN)] was basically unchanged.

View Article and Find Full Text PDF

The outbreak of the monkeypox epidemic underscores the importance of developing a rapid and sensitive virus detection technique. Microneedles (MNs) offer minimally invasive sampling capabilities, providing a solution for the development of integrated extraction and diagnostic portable devices. Here, we report an integrated MNs and hydrogel biosensor (IMHB) platform, composed of an electronic device, an MN patch, and a hydrogel patch.

View Article and Find Full Text PDF

Detection of microRNA-21 based on smartly designed ratiometric electrochemical sensor and dual-signal amplification.

Anal Chim Acta

January 2025

Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi, China. Electronic address:

MicroRNA (miRNA) serves as an effective and viable biomarker for early diagnosis and monitoring of cancer disorders. It is highly expressed in tumor cells, including lung cancer, liver cancer and lymphoma. Herein, we propose a ratiometric electrochemical sensor for ultrasensitive detection of miRNA-21 using dual signal amplification, hybridization chain reaction and Exo III assisted-amplification.

View Article and Find Full Text PDF

A new conjugate, 2-(4-(anthracen-9-yl) phenyl)-[1,2-d]imidazole-1H-anthraquninone (AQI) has been designed and synthesized as a molecular probe 4. The photophysical and electrochemical behavior of the probe in the absence and presence of different class of ions were examined in acetonitrile solution. The probe 4 with F and CN anions showed ratiometric fluorescence "turn - On" response due to variation in ICT processes.

View Article and Find Full Text PDF

A novel ratiometric electrochemical aptasensor based on graphene quantum dots/Cu-MOF nanocomposite for the on-site determination of Staphylococcus aureus.

J Hazard Mater

December 2024

Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China. Electronic address:

The sensitive detection of Staphylococcus aureus (S. aureus) holds great practical importance for ensuring public health and food safety. In this study, a sensitivity and stability ratiometric electrochemical aptasensor using graphene quantum dots/[Cu (benzotriazole-5-COO) (benzotriazole-5-COOH) (μ-Cl) (μ-OH)-(HO)]·3 HO nanocomposite (GQDs/Cu-MOF) was constructed for S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!