Purpose: To investigate the efficacy of a deep learning regression method to predict macula ganglion cell-inner plexiform layer (GCIPL) and optic nerve head (ONH) retinal nerve fiber layer (RNFL) thickness for use in glaucoma neuroprotection clinical trials.

Design: Cross-sectional study.

Participants: Glaucoma patients with good quality macula and ONH scans enrolled in 2 longitudinal studies, the African Descent and Glaucoma Evaluation Study and the Diagnostic Innovations in Glaucoma Study.

Methods: Spectralis macula posterior pole scans and ONH circle scans on 3327 pairs of GCIPL/RNFL scans from 1096 eyes (550 patients) were included. Participants were randomly distributed into a training and validation dataset (90%) and a test dataset (10%) by participant. Networks had access to GCIPL and RNFL data from one hemiretina of the probe eye and all data of the fellow eye. The models were then trained to predict the GCIPL or RNFL thickness of the remaining probe eye hemiretina.

Main Outcome Measures: Mean absolute error (MAE) and squared Pearson correlation coefficient (r) were used to evaluate model performance.

Results: The deep learning model was able to predict superior and inferior GCIPL thicknesses with a global r value of 0.90 and 0.86, r of mean of 0.90 and 0.86, and mean MAE of 3.72 μm and 4.2 μm, respectively. For superior and inferior RNFL thickness predictions, model performance was slightly lower, with a global r of 0.75 and 0.84, r of mean of 0.81 and 0.82, and MAE of 9.31 μm and 8.57 μm, respectively. There was only a modest decrease in model performance when predicting GCIPL and RNFL in more severe disease. Using individualized hemiretinal predictions to account for variability across patients, we estimate that a clinical trial can detect a difference equivalent to a 25% treatment effect over 24 months with an 11-fold reduction in the number of patients compared to a conventional trial.

Conclusions: Our deep learning models were able to accurately estimate both macula GCIPL and ONH RNFL hemiretinal thickness. Using an internal control based on these model predictions may help reduce clinical trial sample size requirements and facilitate investigation of new glaucoma neuroprotection therapies.

Financial Disclosure(s): Proprietary or commercial disclosure may be found after the references.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ogla.2022.08.014DOI Listing

Publication Analysis

Top Keywords

deep learning
16
clinical trial
12
rnfl thickness
12
gcipl rnfl
12
glaucoma neuroprotection
8
probe eye
8
superior inferior
8
090 086
8
model performance
8
glaucoma
6

Similar Publications

Prebiotics, traditionally linked to gut health, are increasingly recognized for their systemic benefits, influencing multiple organ systems through interactions with the gut microbiota. Compounds like inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) enhance short-chain fatty acid (SCFA) production, benefiting neurocognitive health, cardiovascular function, immune modulation, and skin integrity. Advances in biotechnology, including deep eutectic solvents (DES) for extraction and machine learning (ML) for personalized formulations, have expanded prebiotic applications.

View Article and Find Full Text PDF

Generative artificial intelligence enables the generation of bone scintigraphy images and improves generalization of deep learning models in data-constrained environments.

Eur J Nucl Med Mol Imaging

January 2025

Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Austria.

Purpose: Advancements of deep learning in medical imaging are often constrained by the limited availability of large, annotated datasets, resulting in underperforming models when deployed under real-world conditions. This study investigated a generative artificial intelligence (AI) approach to create synthetic medical images taking the example of bone scintigraphy scans, to increase the data diversity of small-scale datasets for more effective model training and improved generalization.

Methods: We trained a generative model on Tc-bone scintigraphy scans from 9,170 patients in one center to generate high-quality and fully anonymized annotated scans of patients representing two distinct disease patterns: abnormal uptake indicative of (i) bone metastases and (ii) cardiac uptake indicative of cardiac amyloidosis.

View Article and Find Full Text PDF

In a rapidly evolving healthcare environment, artificial intelligence (AI) is transforming diagnostic techniques and personalised medicine. This is also seen in osseous biopsies. AI applications in radiomics, histopathology, predictive modelling, biopsy navigation, and interdisciplinary communication are reshaping how bone biopsies are conducted and interpreted.

View Article and Find Full Text PDF

Automatic multimodal registration of cone-beam computed tomography and intraoral scans: a systematic review and meta-analysis.

Clin Oral Investig

January 2025

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.

Objectives: To evaluate recent advances in the automatic multimodal registration of cone-beam computed tomography (CBCT) and intraoral scans (IOS) and their clinical significance in dentistry.

Methods: A comprehensive literature search was conducted in October 2024 across the PubMed, Web of Science, and IEEE Xplore databases, including studies that were published in the past decade. The inclusion criteria were as follows: English-language studies, randomized and nonrandomized controlled trials, cohort studies, case-control studies, cross-sectional studies, and retrospective studies.

View Article and Find Full Text PDF

Mining versatile feruloyl esterases: phylogenetic classification, structural features, and deep learning model.

Bioresour Bioprocess

January 2025

Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.

Feruloyl esterases (FEs, EC 3.1.1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!