The potential of industrial effluents from vitamin C (VC) production was assessed for agricultural applications by monitoring plant growth, soil properties, and microbial community structure. The results demonstrated that two types of effluents-residue after evaporation (RAE) and concentrated bacterial solution after ultrafiltration (CBS)-had positive effects on the yield and VC content of pak choi. The highest yield and VC content were achieved with a combined RAE-CBS treatment (55.82 % and 265.01 % increase, respectively). The soil fertility was also enhanced by the application of RAE and CBS. Nitrate nitrogen and organic carbon contents in the soil were positively correlated with the RAE addition, while ammonium nitrogen and available phosphorus were positively correlated with the CBS addition. The diversity of bulk and rhizosphere soil bacterial communities increased significantly after the addition of RAE-CBS. The abundance of Sphingomonas and Rhizobium significantly increased after the RAE-CBS treatment, which affected aromatic compound hydrolysis and nitrogen fixation positively. Changes in plant growth and soil fertility were closely related to the upregulation of functional gene expression related to C, N, and P cycling. RAE and CBS application exerted various positive synergistic effects on plant growth, soil fertility, and bacterial community structure. Consequently, the study results confirmed the potential of RAE and CBS application in agriculture. This study provides an innovative solution for utilizing VC industrial wastewater in agriculture in a resourceful and economically beneficial manner while alleviating the corresponding environmental burden.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.158253 | DOI Listing |
Mol Breed
February 2025
Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China.
Unlabelled: Clubroot, caused by , is a globally pervasive soil-borne disease that poses a significant challenge primarily in cruciferous crops. However, the scarcity of resistant materials and the intricate genetic mechanisms within cabbage present major obstacles to clubroot resistance (CR) breeding. In our previous research, we developed an Ogura CMS cabbage variety, "17CR3", which harbors the gene, crucial for CR.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Soil Science, Faculty of Agriculture/ Institute for Agricultural Research, Ahmadu Bello University, Zaria, Nigeria.
Population growth has led to excessive land use, affecting soil suitability and sustainability. Detailed soil characterization and land evaluation for various land uses are essential steps toward achieving food security and sustaining the environment. This study classifies soils and assesses their suitability for tomato cultivation using the FAO Land Assessment Framework and Analytical Hierarchy Process (AHP) model.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Agricultural Economics, Faculty of Agriculture, Atatürk University, Yakutiye, Erzurum, 25240, Türkiye.
Push-pull technology (PPT) continues to gain relevance among smallholder farmers across the East African region in managing the constraints affecting cereal crop yields including stemborers, fall armyworm, striga weed, and low soil fertility. While previous research has emphasized the significance of socioeconomic factors in explaining farmers' decisions to adopt PPT, the social-psychological factors that influence farmers' adoption intentions have not been extensively studied. Therefore, this study investigated the influence of social-psychological factors on the intention to adopt or increase the land area under PPT based on the theory of planned behavior (TPB).
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Colorado Water Center, Colorado State University, Fort Collins, CO, USA.
Background: Incorporating organic manure improves soil properties and crop productivity. A long-term study started in October 1967 examined the effects of farmyard manure and nitrogen fertilization on the soil at key growth stages of pearl millet in a pearl millet-wheat cropping system over its 51st cycle.
Results: Applying 15 Mg of farmyard manure (FYM) per hectare in both growing seasons significantly boosted soil organic carbon (SOC), dissolved organic carbon (DOC), and key nutrients compared to one-season application.
Ecotoxicol Environ Saf
January 2025
College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China.
Soil nitrogen (N) transformations control N availability and plant production and pose environmental concerns when N is lost, raising issues such as soil acidification, water contamination, and climate change. Former studies suggested that soil N cycling is chiefly regulated by microbial activity; however, emerging evidence indicates that this regulation is disrupted by heavy metal (HM) contamination, which alters microbial communities and enzyme functions critical to N transformations. Environmental factors like soil organic carbon, soil texture, water content, temperature, soil pH, N fertilization, and redox status play significant roles in modulating the response of soil N cycling to HM contamination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!