Seagrass meadows are important shallow coastal ecosystems due to their contribution to enhancing biodiversity, nutrient cycling, carbon burial, and sediment stabilisation, but the maintenance of their integrity has been threatened by several anthropogenic disturbances. Active restoration is considered a reliable strategy to enhance recovery of seagrass ecosystems, and decision making for correct seagrass restoration management requires relying on valuable information regarding the effectiveness of past restoration actions and experimental efforts. Previous experimental efforts and human-mediated active restoration actions of the slow growing seagrass Posidonia oceanica have been collated here by combining a literature systematic review and questionnaires consulting seagrass ecology experts. Overall, the poor consistency of the available information on P. oceanica restoration may be due to the wide portfolio of practices and methodologies used in different conditions, that supports the need of further field manipulative experiments in various environmental contexts to fill the identified knowledge gaps. The current situation requires an international, collaborative effort from scientists and stakeholders to jointly design the future strategy forward in identifying the best practices that lead to efficient restorations of P. oceanica habitat and functioning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.158320 | DOI Listing |
Mar Environ Res
December 2024
University of Sassari, Department of Chemical, Physical, Mathematical and Natural Sciences, Sassari, Italy; National Biodiversity Future Centre, Palermo, Italy.
Recovering seagrass ecosystems through restoration has become impellent to re-establish their functionality and services. Although the use of seedlings may represent an appropriate solution, little information is provided on the seedling-based restoration effectiveness with influence of biotic and abiotic interactions. Survival, morphological development and leaf total phenol content of transplanted Posidonia oceanica seedlings were evaluated under different origin, thermal regimes and herbivore pressure through a five-months field experiment in two MPAs, located on the west (cold) and east (warm) Sardinia coast to explore the effectiveness of seedling-based restoration.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
Anthropogenic pressures affect large stretches of Mediterranean coastal environments, determining alterations, including chemical pollution, able to impair ecosystem functioning and services. Among the pollutants of major concern for their toxicity and persistence, there are polycyclic aromatic hydrocarbons (PAHs), which can be effectively monitored through bioaccumulation approaches. However, the main biomonitor of PAHs in the Mediterranean Sea, Posidonia oceanica, is currently undergoing extensive regressions due to anthropogenic pressures, forcing the search for alternative biomonitors.
View Article and Find Full Text PDFMetabolites
December 2024
CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France.
Background/objectives: Biogenic volatile organic compounds (BVOCs), extensively studied in terrestrial plants with global emissions around 1 PgC yr, are also produced by marine organisms. However, benthic species, especially seagrasses, are understudied despite their global distribution (177,000-600,000 km). This study aims to examine BVOC emissions from key Mediterranean seagrass species (, , , and ) in marine and coastal lagoon environments.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
February 2025
Algal and Microbial Biotechnology Division, Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway.
Factors influencing variance of DNA methylation in vegetatively reproducing plants, both terrestrial plants and aquatic seagrasses, is just beginning to be understood. Improving our knowledge of these mechanisms will increase understanding of transgenerational epigenetics in plant clones, of the relationship between DNA methylation and seagrass development, and of the drivers of epigenetic variation, which may underly acclimation in clonally reproducing plants. Here, we sampled leaves, rhizomes and roots of three physically and spatially separated ramet sections from a clonally propagated field of the seagrass Zostera marina.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece.
Plastic pollution in marine environments is of global concern, yet its distribution within seagrasses remains poorly understood. We explore the efficiency of Posidonia oceanica in trapping microplastics (MPs) across various components (leaves, rhizomes, sediment), examine their potential transfer through the food web and assess their dispersal using advanced modelling techniques. Field surveys confirm that P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!