Zinc and syringic acid have metabolic and antioxidant medicinal potentials. A novel zinc(II)-syringic acid complex with improved anti-hyperglycaemic and antioxidant potential was developed. Zinc(II) was complexed with syringic acid in a 1:2 molar ratio and characterized using FT-IR, H NMR and LC-MS. Different experimental models were used to compare the anti-hyperglycaemic and antioxidant properties between the complex and precursors. A Zn(II)-bisyringate.2HO complex was formed. The in vitro radical scavenging and Fe reducing antioxidant, antiglycation, and α-glucosidase inhibitory activities of the complex were 1.8-5.2 folds stronger than those of the syringic acid precursor and comparable to those of the positive controls. The complex possessed an increased ability to inhibit lipid peroxidation (by 1.6-1.7 folds) and glutathione depletion (2.8-3 folds) relative to syringic acid in Chang liver cells and liver tissues isolated from rats. The complex exhibited a higher glucose uptake effect (EC = 20.4 and 386 µM) than its precursors (EC = 71.1 and 6460 µM) in L6-myotubes and psoas muscle tissues isolated from rats, respectively, which may be linked to the observed increased cellular zinc uptake potentiated by complexation. Tissue glucose uptake activity was accompanied by increased hexokinase activity, suggesting increased glucose utilization. Moreover, treatment increased tissue phospho-Akt/pan-Akt ratio. The complex had strong molecular docking scores than syringic acid with target proteins linked to diabetes. The presence of two syringic acid moieties and Zn(II) in the complex influenced its potency. The complex was not hepatotoxic and myotoxic in vitro. Zinc-syringic acid complexation may be a novel promising therapeutic approach for diabetes and oxidative complications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2022.113600DOI Listing

Publication Analysis

Top Keywords

syringic acid
28
glucose uptake
12
acid
9
complex
9
acid complexation
8
anti-hyperglycaemic antioxidant
8
tissues isolated
8
isolated rats
8
syringic
6
antioxidant
5

Similar Publications

Heavy metal pollution, especially arsenic toxicity, significantly impairs plant growth and development. Phenolic acids, known for their antioxidant properties and involvement in stress signaling, are gaining increased attention as plant secondary metabolites with the potential to enhance plant resistance to these stressors. This study aimed to investigate the effects of different concentrations of syringic acid (SA1, 10 μM; SA2, 250 μM; SA3, 500 μM) on growth, photosynthetic parameters, and antioxidant activity in lettuce seedlings subjected to arsenic stress (As, 100 μM).

View Article and Find Full Text PDF

Towards enhancing phytoremediation: The effect of syringic acid, a plant secondary metabolite, on the presence of phenoxy herbicide-tolerant endophytic bacteria.

Sci Total Environ

January 2025

UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.

Among emerging pollutants, residuals of phenoxy herbicides, including 2-chloro-4-methylphenoxy acid (MCPA), are frequently detected in non-targeted areas. MCPA can be removed from environmental matrices using biological remediation methods including endophyte-assisted phytoremediation. The interactions between selected plants excreting to the rhizosphere plant secondary metabolites (PSMs) and plant-associated bacteria (incl.

View Article and Find Full Text PDF

The Impact of Cooking on Antioxidant and Enzyme Activities in Ruichang Yam Polyphenols.

Foods

December 2024

Jiangxi Ecological Chemical Engineering Technology Research Center, Jiujiang University, Jiujiang 332005, China.

In this study, the total polyphenol content (TPC), total flavonoid content (TFC), and biological activity of yam polyphenols (including free phenolics, conjugated phenolics, and bound phenolics) were investigated during home cooking. Polyphenol components were preliminary detected in raw yam by HPLC, including 2, 4-dihydroxybenzoic acid, syringic acid, vanillic acid, 4-coumaric acid, and sinapic acid. TPC and TFC of soluble conjugated polyphenols were the main phenolic compounds in Ruichang yam.

View Article and Find Full Text PDF
Article Synopsis
  • The study compared sugar-free (A) and sugar-added (B) carob sherbet fermented with water kefir grains, noting significant changes in pH, TSS, and titratable acidity after 48 hours of fermentation.
  • After fermentation, sugar-free A maintained higher levels of beneficial compounds like gallic acid and displayed a lower decrease in antioxidant activity (DPPH) compared to sugar-added B, although both saw declines over time.
  • Moreover, A showed better mineral retention after 14 days, while B exhibited higher microbial counts throughout fermentation and storage.
View Article and Find Full Text PDF

Enhancing the growth and essential oil components of Lavandula latifolia using Malva parviflora extract and humic acid as biostimulants in a field experiment.

Sci Rep

January 2025

Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.

Natural extracts as biostimulants have the potential to enhance the productivity and growth of many medicinal and aromatic plants. This study aimed to enhance the growth, and essential oil (EO) content, as well as composition of Lavandula latifolia Medik. by using Malva parviflora L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!