Purpose: To investigate the feasibility of using the free PRIMO Monte Carlo software for independent dose check of cranial SRS plans designed with the Varian HyperArc (HA) technique.
Materials And Methods: In this study, the PRIMO Monte Carlo software v. 0.3.64.1800 was used with the phase-space files (v. 2, Feb. 27, 2013) provided by Varian for 6 MV flattening-filter-free (FFF) photon beams from a Varian TrueBeam linear accelerator (linac), equipped with a Millennium 120 multileaf collimator (MLC). This configuration was validated by comparing the percentage depth doses (PDDs), lateral profiles and relative output factors (OFs) simulated in a water phantom against measurements for field sizes from 1 × 1 to 40 × 40 cm. The agreement between simulated and experimental relative dose curves was evaluated using a global (G) gamma index analysis. In addition, the accuracy of PRIMO to model the MLC was investigated (dosimetric leaf gap, tongue and groove, leaf transmission and interleaf leakage). Thirty-five HA SRS plans computed in the Eclipse treatment planning system (TPS) were simulated in PRIMO. The Acuros XB algorithm v. 16.10 (dose to medium) was used in Eclipse. Sixty targets with diameters ranging from 6 to 33 mm were included. Agreement between the dose distributions given by Eclipse and PRIMO was evaluated in terms of 3D global gamma passing rates (GPRs) for the 2 %/2 mm criteria.
Results: Average GPR greater than 95 % with the 2 %(G)/1 mm criteria were obtained over the PDD and profiles of each field size. Differences between PRIMO calculated and measured OFs were within 0.5 % in all fields, except for the 1 × 1 cm with a discrepancy of 1.5 %. Regarding the MLC modeling in PRIMO, an agreement within 3 % was achieved between calculated and experimental doses. Excellent agreement between PRIMO and Eclipse was found for the 35 HA plans. The 3D global GPRs (2 %/2 mm) for the targets and external patient contour were 99.6 % ± 1.1 % and 99.8 % ± 0.5 %, respectively.
Conclusions: According to the results described in this study, the PRIMO Monte Carlo software, in conjunction with the 6X FFF Varian phase-space files, can be used as secondary dose calculation software to check stereotactic radiosurgery plans from Eclipse using the HyperArc technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmp.2022.08.016 | DOI Listing |
J Med Phys
September 2024
Department of Physics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines.
Aims: The objective was to validate the initial beam parameters of the Davao Doctors Hospital's 6 MV Elekta Synergy Platform linac, which performs to the specification of the commissioning data per our records using the gamma-index analysis toolkit integrated inside PRIMO software.
Materials And Methods: In PRIMO, a sequence of optimization processes is performed, in which the measured and simulated percent depth dose (PDD) and lateral beam profiles at various depths are compared, using the stringent gamma-index passing rate at 1%/1 mm criteria (GPR11). Using four fields of sizes 3 cm × 3 cm, 4 cm × 4 cm, 5 cm × 5 cm, and 10 cm × 10 cm, the dose is calculated on a water phantom measuring 16.
J Med Imaging Radiat Sci
December 2024
Hospital Quirónsalud Barcelona. Servicio de Oncología Radioterápica, Plaza Alfonso Comín 5, 08023 Barcelona, Spain; Hospital Quirónsalud Barcelona. Servicio de Radiofísica y Protección Radiológica. Plaza Alfonso Comín 5, 08023 Barcelona, Spain.
Introduction: The aim of this study was to assess the results of the local pre-treatment verifications of online adaptive prostate SBRT plans performed by dosimetrists METHODS AND MATERIALS: Prostate SBRT treatments are planned in our department using an online adaptive method developed and validated by our group. The adaptive plans were computed on the daily CBCT scan using the Acuros XB v. 16.
View Article and Find Full Text PDFRadiat Oncol
January 2024
Westdeutsches Protonentherapiezentrum Essen (WPE), Hufelandstraße 55, 45147, Essen, Germany.
Background: Monte Carlo simulation of radiation transport for medical linear accelerators (linacs) requires accurate knowledge of the geometrical description of the linac head. Since the geometry of Varian TrueBeam machines has not been disclosed, the manufacturer distributes phase-space files of the linac patient-independent part to allow researchers to compute absorbed dose distributions using the Monte Carlo method. This approach limits the possibility of achieving an arbitrarily small statistical uncertainty.
View Article and Find Full Text PDFRep Pract Oncol Radiother
November 2023
LPMR, Mohammed First University, Faculty of Science, Oujda-Angad, Morocco.
Background: The purpose of this research was to establish the primary electron beam characteristics for an Elekta Synergy linear accelerator. In this task, we take advantage of the PRIMO Monte Carlo software, where the model developed contains the majority of the component materials of the Linac.
Materials And Methods: For all energies, the Elekta Linac electron mode and 14 × 14 cm applicator were chosen.
J Med Phys
September 2023
Department of Radiation Oncology, Balco Medical Centre, Raipur, Chhattisgarh, India.
Monte Carlo (MC) techniques have been recognized as the gold standard for the simulation of radiation transport in radiotherapy. The aim of the study is to perform dosimetric evaluation of Simultaneous Integrated Boost (SIB) radiation treatment planning using MC simulation approach. The geometrical source modeling and simulation of 6 MV Flattening Filter Free (FFF)beam from TrueBeam linear accelerator have been carried out to simulate Volumetric Modulated Arc Therapy (VMAT) plans using MC simulation software PRIMO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!