Hydrodynamic interactions between charged and uncharged Brownian colloids at a fluid-fluid interface.

J Colloid Interface Sci

Levich Institute and Department of Chemical Engineering, City College of the City University of New York, New York, NY 10031, USA. Electronic address:

Published: December 2022

Hypothesis: The cluster formation and self-assembly of floating colloids at a fluid/fluid interface is a delicate force balance involving deterministic lateral interaction forces, viscous resistance to relative colloid motion along the surface and thermal (Brownian) fluctuations. As the colloid dimensions get smaller, thermal forces and associated drag forces become important and can affect the self assembly into ordered patterns and crystal structures that are the starting point for various materials applications.

Numerics: Langevin dynamic simulations for particle pairs straddling a liquid-liquid interface with a high viscosity contrast are presented to describe the lateral interfacial assembly of particles in Brownian and non-Brownian dominated regimes. These simulations incorporate capillary attraction, electrostatic repulsion, thermal fluctuations and hydrodynamic interactions (HI) between particles (including the effect of the particle immersion depth). Simulation results are presented for neutrally wetted particles which form a contact angle θ=90 at the interface.

Findings: The simulation results suggest that clustering, fractal growth and particle ordering become favorable outcomes at critically large values of the Pe numbers, while smaller Pe numbers exhibit higher probabilities of final configurations where particle motion remains uncorrelated in space and particle pairs are found to be more widely separated especially upon the introduction of HI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.08.084DOI Listing

Publication Analysis

Top Keywords

hydrodynamic interactions
8
particle pairs
8
particle
5
interactions charged
4
charged uncharged
4
uncharged brownian
4
brownian colloids
4
colloids fluid-fluid
4
fluid-fluid interface
4
interface hypothesis
4

Similar Publications

Hydrodynamic characterization of the FtsZ protein from Escherichia coli demonstrates the presence of linear and lateral trimers.

Anal Biochem

January 2025

Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago, 7800003, Chile; Laboratorio de Biotecnología Vegetal y Ambiental Aplicada, Universidad Tecnológica Metropolitana, Santiago, Chile.

FtsZ is a bacterial protein that plays a crucial role in cytokinesis by forming the Z-ring. This ring acts as a scaffold to recruit other division proteins and guide the synthesis of septal peptidoglycan, which leads to cell constriction. In its native state, the FtsZ protein from Escherichia coli (EcFtsZ) is a multi-oligomer comprising dimers, trimers, tetramers, and hexamers in a dynamic self-association equilibrium depending on its concentration.

View Article and Find Full Text PDF

Nanostructured dielectric metasurfaces offer unprecedented opportunities to control light-matter momentum exchange, and thereby the forces and torques that light can exert on matter. Here we introduce optical metasurfaces as components of ultracompact untethered microscopic metaspinners capable of efficient light-induced rotation in a liquid environment. Illuminated by weakly focused light, a metaspinner generates torque via photon recoil through the metasurfaces' ability to bend light towards high angles despite their sub-wavelength thickness, thereby creating orbital angular momentum.

View Article and Find Full Text PDF

The rising demand for energy storage calls for technological advancements to address the growing needs. In this context, sodium-ion (Na-ion) batteries have emerged as a potential complementary technology to lithium-ion batteries (Li-ion). Among other materials, NaV(PO)F (NVPF) is a promising cathode for Na-ion batteries due to its high operating voltage and good energy density.

View Article and Find Full Text PDF

Background: Gadolinium-based contrast agents (GBCA) are widely used in magnetic resonance imaging (MRI) to enhance image contrast by interacting with water molecules, thus improving diagnostic capabilities. However, understanding the residual accumulation of GBCA in tissues after administration remains an area of active research. This highlights the need for advanced analytical techniques capable of investigating interactions between GBCAs and biopolymers, such as type I collagen, which are abundant in the body.

View Article and Find Full Text PDF

The synthesis of poly(N-isopropyl acrylamide) (pNIPA)-based polymers via the surfactant-free precipitation polymerization (SFPP) method produced thermosensitive nanospheres with a range of distinctive physicochemical properties. Nano- and microparticles were generated using various initiators, significantly influencing particle characteristics, including the hydrodynamic diameter (D), which varied from 87.7 nm to 1618.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!