αs1-Casein (αs1-CN) is a major cow milk allergen, while the tertiary structure of αs1-CN and conformational epitopes of αs1-CN have not been clarified. Here, a reasonable three-dimensional structure of αs1-CN was established using ab initio methods, and hot-spot residues and epitopes were investigated by combining molecular dynamics simulation, peptides synthesis, and ELISA. Obtained results demonstrated that the binding mechanism between αs1-CN and IgG was located on three main regions: a helical structure zone (E77-Q97), the flexible loop zone (Y154-T174), and a flexible C-terminal (N190-L198), mainly connecting via hydrogen bond and ionic bonds. The hydrolysates produced by papain with lowest antigenicity (12.43%), which could considerably destroy the essential epitopes of αs1-CN confirmed by epitope synthesis, and LC-MS/MS. The results reported herein would provide novel insights into the interface interactions between αs1-CN and IgG, and prove valuable for developing hypoallergenic infant-formula and peptide vaccines for allergen-specific immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2022.133987DOI Listing

Publication Analysis

Top Keywords

structure αs1-cn
8
epitopes αs1-cn
8
αs1-cn igg
8
αs1-cn
7
insight molecular-level
4
molecular-level details
4
details αs1
4
αs1 casein
4
casein interactions
4
interactions igg
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!