Rare-earth metal-organic frameworks (RE-MOFs) are an attractive platform to construct luminescent materials for practical applications in lighting, optoelectronics, and sensing. By adjusting the metal composition in mixed RE-MOFs, one can not only realize tunable emission but also construct ratiometric luminescent sensors. As such, it is highly desirable to prepare robust RE-MOFs that display efficient, multifunctional sensing capability. In this work, we designed and synthesized a series of RE-MOFs that exhibit both excellent thermal and chemical stability due to the incorporation of a bulky butyl group on a new carbazole-based ligand. By rationally tuning the molar ratio of Eu/Tb/Y, a white-light-emitting MOF was developed as an excellent thermal sensor that exhibits a temperature-induced ratiometric luminescence response between 278 and 378 K. After removing the coordinated solvent molecules via thermal treatment, the desolvated MOF materials exhibit excellent turn-on or color change sensitivity to recognize dimethylformamide (DMF) molecules. Such high sensitivity is attributed to the DMF coordination that induces the framework structure change and shifts the ligand's excited-state energy level to facilitate the ligand-to-metal energy transfer process. Taking together, NPF-700-RE represents a new class of robust, tunable luminescent materials that have great potential in white-light emission and thermal- and DMF-sensing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c09497DOI Listing

Publication Analysis

Top Keywords

white-light emission
8
luminescent materials
8
exhibit excellent
8
excellent thermal
8
robust carbazole-based
4
carbazole-based rare-earth
4
rare-earth mofs
4
mofs tunable
4
tunable white-light
4
emission temperature
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!